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ABSTRACT

This paper is devoted to the concept of instability in dynamical systems with the
main emphasis on Orbital, Hadamard'sand Reynolds’ instabilities. |t demonstrates that
the requirement about differentiability in dynamics insome cases isnot consistent with
the physical nature of motions, and may lead to unrealistic solutions. Special attentionis
paid to the fact that instability is not an invariant of motion: it depends upon frames of
reference, metric of configuration space, and classes of functions selected for mathematical
models of physical phenomena. This leads to the possibility of elimination of certain
types of instabilities (and in particular, those which lead to chaos and turbulence) by
enlarging the class of functions using the Reynolds-type transformation in combination
with the stabilization principle: the additional terms (tile so called Reynolds stresses )are
found from the conditions that they suppress the original instability. Based upon these
ideas, new approach to chaos and turbulence, as well as new mathematical formalism for

nonlinear dynamics, are discussed.




l. INTRODUCTION

In recent years an increasing amount of interest has been addressed to the fact that. in
many different domains of science(physics, chemistry, biology.engineering), systems with
a similar strange behavior are frequently encountered. These systems display irregular
and unpredictable time evolution, and are called chaotic. But chaotic motions are not the
only motions in dynamics which are unpredictable. Much earlier. about a hundred years
ago, O. Reynolds studied, experimentally and theoretically, turbulent motions in fluids.
Despite the many efforts, the problem of prediction of turbulent motions is still unsolverl.
Later another type of instability which is associated with a failure of hyperbolicity in
distributed systems was discovered by J. Hadamard. In all these cases the postinstability
behavior of the solutions to the original models is characterized by supersensitivity to
initial conditions, and for that reason, it cannot be predicted since the initial Conditions
are never known exactly. In this paper we will discuss a possibility to develop a unified

approach to prediction of postinstability behaviorin dynamics.
1. Mathematical Formulations and Dynamical Invariant

Dynamics describes the motion of systems, i.e. the timeevolution of its parameters.
The time variable t can be discrete or continuous. In discrete-time dynamical systems. the
rate of change of their parameters x is defined only for discrete values of t. These systems

can be presented as the iteration of a function:
Xee1 = Vv(xet), t=0,1,2,.. etc. (1)

i.e. as difference equations.

In continuous-time dynamical systems the rate of change of x is defined for all values

of t; such systems can be modelled by ordinary different ial equations.

dx
—(‘i‘t“ —x = v(x, t) (2)
or by partial [differential equations:
Ix 9% x
. [} " ] iy “ — —
x = v(x,x,x, . .t), X = s X =02 3)

if the rate of change, in addition, depends upon distributions of x over space coordinates

s. InEqs. (1), (2)and (3), x represents the state of the dynamical system.

2




Continuous-time dynamical system theory has adopted basic mathematical assump-
tions of theory of differential equations such as differentiability of the parameters(with
respect to time and space) “asmany times as necessar v, the boundedness of the velocity
gradients 9x/0x ( the Lipschitz conditions) ete. Under these assumptions. the existence.
uniqueness and stability of solutions describing the behavior of dynamical systemshasbeen
studied. However, the dynamical systems cannot be identified with the mathematical mod-
els,i.e., with the differential equations. Indeed, dynamical systems are characterized by
scalars, vectors, or tensors which are invariant with respect to coordinate transform ations.
Hence, Eqs. (2) or (3) model a dynamical system only if they preserve these invariants
after any (smooth ) coordinate t ransformation. For instance, any model “of a mechanical
system must be derivable from variational principles which are expressed via the mechan-
ical invariant (kinetic and potential energy, dissipation functions, etc.), In other words,
the difference between dynamical systems and the corresponding differential equations is
similar to the difference between a matrix as an object of algebra, and a second rank tensor
as an object of geometry: The same tensor can bemodelled by different matrices depend-
ing on choices of coordinates: however, all these matrices must have the same eigenvalues.
Continuing this analogy, it can be expected that the parameters x inEqs. (2), or (3) ran
be decomposed (at least,in principle)into “invariant” and “non-invariant” components,
in the same way in which a matrix A can be decomposed into invariant ( diagonal A ) and

coordinate-dependent (t?, 8)! components:
A= 6467} (1)

2. Ignorable Coordinates and Orbital Instability

In mechanical systems, “non-invariant” components of x canbe associated with ig-
norable (or cyclic) coordinates which do not enter the Lagrangian function explicitly, and
therefore, do not affect the energy of the system. For non-conservative systems, in addition
to that, the generalized forcescorresponding to these coordinat es are zero. In terms of

Lagrange equations, this property is expressed as the conservation of generalized ignorable
impulses P (Gantmacher, F., 1970):
oL oL
=— =0, Qo = 0,ie. 5~ = Po = Const,a=12,...m (5)
994 dq
unlike the equations for the position coordinates which, in general, do not preserve the
position impulses P:

d 0L 0L

S L k= 1,2, .. 6




Here L is the Lagrangian, g, and ¢k are ignorable and position coordinates, respectively,

(Qx are non-potential components of generalized forces.

In order to illustrate the difference between position and ignorable coordinates. con-

sider the following dynamical system:

~1

ro= sinr, 6 = w = Const {
where r and 8 are polar coordinates.

It has periodic attractors:

vk
7?7 = 5 k =0.1,...etc., 8§ = 8, + wt (S)
Returning to Eqg. (7), one caneasily identify r and 8 as position and ignorable coordinates,
respectively, Indeed, the Lagrangian and generalized forces for this dynamical system are:

L = %(1‘-2 + G)z),Qr = dcosr,@y = 0 9

and therefore.
_{1_ oL _ Wr d OL _ =0 10)
it 3. U T og, T e H)

It is important to emphasize that the position coordinate r is stable at the attractors,

while the ignorable coordinate © is at the boundary of stability: any small error in © will

increase linearly (but not exponentially) in time.

Indifference of energy of adynamical system to an unlimited growth of ignorable co-
ordinates raises the following quest ion: do there exist such states where all the position
coordinates are stable, butsome of ignorable coordinates are unstable? Numerical ex-
periments give positive answers to this question. These states are associated with chaotic
behavior. Unlike periodic attractors, here any small error in initid values of ignorable coor-
dinates increases exponentially (but not linearly)with time, so that two motion trajectories
which initially were indistinguishable (because of finite scale of observation), diverge expo-
nentially, and therefore, a behavior of the dynamical system becomes unpredictable. But
is such a “multivaluedness” of trajectories consistent with the basic mathematical assump-
tions about motions of dynamical systems? This problem will be discussed in the next

sections in connection with predictability in classical dynamics.
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3. Distributed Systems and Failure of differentiability

There are two types of distributed systems - hyperbolic and parabolic - which can
model dynamical behaviors. (Elliptic equations are ill-prosed for time evolution processes. )
Distributed dynamical systems can exhibit more sophisticated behavio rs such as turbulence
(whose relation to chaos is still disputed), Hadamard's instability (Zak, M., 1982a. b, ¢)
which is associatad with failure of hyprebolicity and transition to ellipticity. formation of

cumulative effects (Zak, M., 1970, 19S3), etc.

Actually, al these phenomena are associated with spatial effectsin distributed dynam-
ical systems resulting from additional mathematical restrictions requiring differentiability
of dynamical parameters with respect to spatial coordinates. But are these restriction al-
ways consistent with physical nature of motions‘? The following example shows that such

restrictions may lead to unrealistic solutions.

Consider an ideal filament stretched in a vertical direction, asshownin Fig. 1. Let
us crosscut it in a middle point and observe the behavior of upper and below parts. The
below part will be folding up in a*thick point”, losing differentiability of its configuration.
The upper part will preserve differentiability of its configurationin an open interval ( which
does not include the free end),but at the end small initial disturbances will accumulate
and become infinitely large (snap of a whip). Both of these effects are lost in the dynamical
model based upon differentiability of the dynamical parameters (for the below part of the
filament ) and upon theé Lipschitz condition at the free end (for the upper partof the
filament (Zak, M., 1970).

4. Open Problems

As has been illustrated below, the evolution of ignorable coordinates may be fun-
damentally different from the evolution of non-ignorable (or position) coordinates. For
instance, the growth of position coordinates is limited by the boundedness of the system
energy, and consequently, their instability cannot persist: the system must find an alter-
native stable state. In contradistinction to that,the instability of ignorable coordinates
(which is called an orbital instability) can persis all the time without having an alternative
stable state. In particular,the indifference of the energy to changes of ignorable parame-

ters is responsible for such phenomena as turbulence, chaos, failure of differentiability and

(o]




uniqueness of solutions. Inturn,the occurrence of these phenomena questions the basic
mathematical assumptions about the claw of functionsin whit-h the dynamical syste ms

are described.

The existence of two different types of parameters in dynamical systets raises some
other questions: can instability of ignorable coordinate develop independently on the be-
havior of the position coordinates? Is instability of ignorable coordinates an invariant of
the frame of reference, or of the class of functions in which motions are studied? Can

instability of ignorable coordinate be eliminated by change of motion representation?

The answers to these questions, as well as new representations of chaos and turbulence

will be discussed 1 this paper.

I. INSTABILITY IN DYNAMICS
1. Basic Concepts

Most of the dynamical processes are so complex that their universal theory which
would capture all the details during all the time periods is unthinkable. That is why the art
of mathematical modelling is to extract only the fundamental aspects of the processand to
neglect its insignificant features, withoutlosingthe core of information. But "insignificant
features” is not a simple concept,. In many cases even vanishingly small forces cancause
large changes in t he dynamical system parameters, and such situations are intuitively
associated with the concept of the instability. Obviously the destabilizing forces cannot
be considered as “insignificant, features”, and therefore, they cannot be ignored. But
since they may be humanly indistinguishable,inthe very beginning, there is no way to
incorporate them into the model. This simply means that the model is not adequate
for quantitative description of the corresponding dynamical process: it must he changed
or modified. However, the instability delivers an important qualitative information: it

manifests the boundaries of applicability of t he original model.

We will distinguish short and long- term instabilities. Short-term instability occurs
when the system has alternative stable states. For (dissipative systems such states can be
represented by static or periodic attractors. In the very beginning of the post-instability

transition period, the unstable motion cannot be traced quantitatively, but it becomes more
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and more deterministic as it approaches the attractor. Hence, a short-term instability does
not necessarily require a modelmodification. Usually this type of instability is associate
with bounded deviation of position coordinates whose changes affect the energy of the
svstem. Indeed, if the growth of a position coordinate persists, the energy of tl e system
wouldhecome 11111)01111 (1 (1.

The long term instability occurs when tile system does not have an alternat ve stable
state. Such type of instability can be associated only with ignorable coordinates since
these coordinates do not effect the energy of the system. The long term instability will be

the main subject of this paper.

2. Orbital instability
a. Ignorable Coordinates

A's mentioned the Intro duction (see (5)), the coordinate q, is called ignorable if it

does not enter the Lagrangian function L as well as nonconservative generalized forces Q:

ar - 0

Be =0, Qo =0 (11)
therefore,

JL

— = P, = Const (12)

J4a

i.e., the generalized ignorable impulse P, is constant.

As follows from Eq.(12), there exist such states of dynamical systems (called station-
ary motions) that all the position coordinates retain constant value while the ignorable
coordinates vary in accordance with a linear law. For example, a regular precession of a

heavy symmetric gyroscope. is a stationary motion characterized by the equation:
O = Const, yp = Const,q'ﬁ = (Const (13)

where the angle of precession iy and the angle of pure rotation ¢ are ignorable coordinates,
while the angle of nutation © - an angle formed by the axis of gyroscope and the vertical

is a position coordinate.




Obviously, stationary motions are notstable with respect toignorable velocities: a
small change in g, a t = O yields, as time progresses. an arbitrarily large change inthe
ignorable coordinates themselves. However, since this change increases linearly (butnot
exponentially), the motion is still considered as predictable.In particular, the Lyap unov
exponents for stationary motions are zero:

o = lim 1 In M = 0 (14)
d(0)—0 , t—no () d(0)
However, incase of nonstationary motions, tile ignorable coordinate can exhibit more
sophisticated behaviors. In” order to demonstrate this, let us consider an inertial motion of
aparticle M of unit mass on a smooth pseudosphere S having a constant negative curvature
(Fig. 2):

G, = coil.st <0 (15)

Remembering that trajectories of inertial motions must be geodesics of S, we will compare
two different trajectories assuming that initially they are parallel and that the distance

between them, ¢g, is very small.

Asshown in differential geometry, the distance, between such geodesics will exponen-
tially increase:

€ = ge¥ 0! GO <0 (16)

Hence, no matter how small the initial distance €0, the current distance e tencs to infinity.

Let us asswune now that the. accuracy to which the initial conditions are known is
characterized by L. It means that any two trajectories cannot be distinguished if the

distance between them is less than L, i.e if:
e< L (17)

The period during which the inequality ( 17),holdshas the order:

1 L
~ ———— In— 18
At Neren n . (18)

However. for

t >> At (19)



these two trajectories diverge suchthat they canbe distinguishecd and must be considerecl
as two different trajectories, Moreover. the distance hetween them tends to in finity even
if =y is small (but not infinitesimal). That is why the motion, once recorded. cannot
be reproduced again (unless the initial conditions are known exactly), and consequently.
it attains stochastic featur s, The Lyapunov exponent for this motion is positive and

constant:

. 1 V-Gt -
o= lim <~> e \/:Go = Const > 0 {20)

t—oo  d(0 —0 \ ¢t €
Letus introduce a system of coordinates atthe surface S: the coordinate ¢along the
geodesic meridians, and the coordinate q;along the parallels. In differential geometry
sucha system is called semi-geodesical. Tile square of the distance between adjacent point

on the pseudosphere is:

ds® = gy dg? + 2912dqidaz + g22dqs (21)
where
1 e |
g =1, 912 =0, 022:-C e~ 2V=Ga (22)
70

The Lagrangian for the inertial motion of the particle M on the pseudosphere is expressed
via the coordinates andtheir temporal derivates as:
.. D) 1 -'2\/:(in .2 >
L =944, = ¢1 - Gl 72 (?3)

anti, consequent 1y,

oL
— =0 (24)
092
while
17
9L L 0,if 43 #0 (23)
on

Hence, ¢y and 92 play roles of position and ignorable coordinates, respectively.

Therefore, an inertial motion of a particle on a pseudosphere is stable with respect
to the position coordinate q,, but it isunstable with respect to the ignorable coordinate.
However, in contradistinction to the stationary motions considered above, here the insta-
bility is characterized by exponential growth of the ignorable coordinate, and that is wily
the motion becomes unpredictable. It can be shown that such a motion becomes stochastic,

(Arnold, V., 1988).




Instability with respect to ignorable coordinates can be associated with orbital insta-
bility. Indeed, turning to the last example, one can represent the particle velocity v as the
product:

v =l (26)

In the course of the instability, tile velocity maguitude |v|, and consequently, the total
energy, remain unchanged, while all tile changes affect only 7.i.e. (e direction of motion,
In other words. orbital instability leads to redistribution of the total energy hetween the

coordinates, and it is characterized by positive Lyapunov exponents.

b. Orbital Instabilsty of Inertial Motions

The results described above were related to inertial motions of a particle on a smooth
surface. However, they can be easily generalized to motions of any finite-degree- of- freedom
mechanical system by using the concept of configuration space. Indeed, if tile mechanical
system has N generalized coordinatesq! (2 =1,2,..... V) and is characterized by the kinetic
energy:

W gt (27)
then the configuration space can be introduced as an N-dimensional space with the follow-
ing metric tensor:

9i; ~ ay (2s)

while the motion of the. system is represented by the motion of the unit-mass particle in

this configuration space.

In order to continuethe analogy to the motion of the particle on asurface in actual
space we will consider only two-dimensional subspaces of the N-dimensional configuration
space, without loss of generality. Indeed, a motion which is instable in any such subspace,

has to be qualified asan unstable in the entire configuration space.

Now the Gaussian curvature of at wo-dimensional configuration subspace (q', °) fol-
L]

lows from the Gauss formula

G _ 1 02(1]2 _ l 02(1” _ l 02022 >
T anjax — a?, \9q'0¢? 2 0q%0q? 2 0q'0q!
- F;ergz Ays — r?lrgzaaﬂ (29)
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where the connection coefficients ['Y, are expressed via the Christoffel symbols:

1 Ja Jay Ja
ot w o po_ Yk
Lk 'ZG ( dg* t Jdq’ Oq¥ ) (30)
while .
== {07 o

Thus. the Gaussian curvature of these subspaces depends only on the coefficients a,,. i.e.
it is fully determined by the kinematical structure of the system [see equation (27)]. In
case of inertial motions, thetrajectories of the representative particle must be geodesics of
the configuration space. Indeed, as follows from (26):

%t: = %{x =01if 0 =0, and |v| = [§] = Const #£ 0 (32)
where s is the arc coordinate along the particle trajectory:

ds = a;,dq'dg’ (33)

But then:
dr

ET_ =0 (34)

which is the condition that the trajectory is geodesic.

o

If the Gaussian curvature. (29) which is uniquely defined by the parameters of the
dynamical system @ij, iS negative:

G<O (35)

then the trajectories of inertial motions of the system originated at close, hut different

points of the configuration space diverge exponentially from each other, and the motion

becomes unpredictable and stochastic. Some examples of orbital instability ininertial

motions are discussed by Zak, M. 1985h.
c. Orbital Imitability of Potential Motions

Turning back to the motion of the particle M on a smooth pseudosphere (Fig. 2).
let us depart from inertia] motions andintroduce a force F acting on this particle. For
noninertial motions (F # O) the trajectories of the particle will not be geodesics, while the
rate of their deviation from geodesics is characterized by the geodesic curvature y. It is

obvious that this curvature must dependont he forces F:
X = y(F) (36)
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L, Synge (1926 has shown that if the force F is potential:
F=-gn {37)

where M is the potential energy, then the condition (33) is replaced Hy the following:

. 14m an
C; -f- 2 T‘k o) Lo — P
o -t- 3x w\ogag T Oq_") nn? <051,y 1,2 (39

Here Ffj are defined by Eqs. (30), and n®are the contravariant components of the unit
normal n to tile trajectory.
The geodesical curvature yin (38) can be expresser via the potential force F:

F-n ynn

VESw T T Taw (39)
As follows from (3S) and (39), the condition (38) reduces to (35) if F = O.
Suppose for example, that the following elastic force:
F = —a%¢,a® = Const (40)

proportional to the normal deviation € from the geodesic trajectory is applied tothe
particle M moving on the smooth pseudosphere. If the initial velocity is directed along one
of the meridians (which are all geodesics), the unperturbed motion will be inertial, and
its trajectory will coincide with this meridian since there ¢ = O, and therefore, F = 0.In

order to verify the orbital stability of this motion, let us turn to the criterion ( 3S ). Since:

' n
x =0, an(lg—(F = Fk=0 (41)

for the unperturbed motion, one obtains the condition for orbital stability:

2

« _ ,
Go + s >0 ie ol < —2WG, G <0 (142)
where
1 .
W = ;)—mvé (43)

Asin the case of inertial motions, tile inequality:

a? < —2WG, (-M)
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leads to unpredictable (stochastic) motionswhich are characterized hy:

g = \/(10 perellie Const >0 (45)
For pure inertial motions (a = 0), Eq.(45) reducesto Eq. ( 13).

After the discovery of chaotic attractors, the stochastic motions which are generated hy
the instability and are characterized by positive Lyapunov exponents, are called chaotic.
Hence, the mequalities (35) and (50) can be assoct ated with criterta of chaos: if the
left hand partin (50) is bounded away from zero by a negative number -B in all the
configuration space where the motion can occur, then the motion will be chaotic, and its

positive Lyapunov exponent will be:
o> B* (46)

Unfortunately, this criterion is too “strong” to be of practical significance: it is sufficient.
but not necessary. Indeed, this criterion assumes that not only global, but also the local
Lyapunov exponents are positive in any pointof the configuration space. At the same time,
for many chaotic motions, local Lyapunov exponents in certain domains of the configuration

space are al negative, or zero, although some of the global exponents are still positive.
d. General Case

Following J. L. Synge, the results for the orbital instabilit y of inertial and potential
motions for a system of material points can be generalized to arbitrary motions.

Since the motion of a system of material points in the configuration space with the
metric (28) is represented by a unit-maw point, the momentum equation follows from tile

second Newton's law:
q“ + F:‘Ilﬂ q"‘(j": Q ' (47)

where Q“ is the force applied to the point. Let g bethe coordinates of the representative
point M moving along an undisturbed natural trajectory C,and (q" + n") the coordinates
of the corresponding (simultaneous)point M* of the disturbed natural trajectory C, while
n" is an infinitesimal disturbance vector. The condition for stability of the motion is that

the magnitude of the disturbance vector should remain permanently small,

13



introducing a unit disturbance vector ;" co-directional withn”, so that:

nt= o a0t =01 (48)

where 1 is the disturbance vector magnitude, and substituting ¢" + 3" into Eq. (47). one

can obtain an invariant differential equation with respect to the scalar 1 (Synge, 1926):
N+ An =20 £49)

where the scalar A is uniquely defined by the metric coefficients a,; and the forces Q,.

namely:

mn

A=Gan™q ,u’(}l - Qrepp® (50)

in which G541 1s the curvature tensor of the configuration space expressed in the covarian

form:
arm,.orm v w _
Gosni = 0(],‘;1 - ’7?717‘ + ( :1r,,,, - Fus ml)(luv, at Qyp = Ol}: {ol
Here I'7,,, are the Christoffel symbols defined by Eq. (30 ), and
aqQ" . moen -~ .
O (B +ThQ o i = T "= i (52)

while the metric tensor of the configuration space is given by Eq.(27).

Eq. (49) leads to a sufficient condition fotr a dynamical system given in the form
(47) to be exponentially unstable. If the Riemannian curvature of the manifold of config-
urat ions corresponding to every t we-space element £ ™ containing the direction of the
given trajectory is bounded away from zero by a constant negative value, and Q,,,r" r"
is hounded away from zero by a constant positive valuein al the domains of the counfigu -
ration space where the motion can occur, then the motion will be exponentially unstable:
since this instability persists, the motion will attain stochastic features (as in the case of
the inertial or potential motion of a particle on a smooth pseudosphere), and therefore, it
will become chaotic. Actually the condition (38) which was formulated earlier without a

proof, follows directly from Eq. (49).
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Obviously, the persistency of tile instability in Eq. (49) can occur only due to a contri-
bution of the exponential growth of the ignorable coordinates into the total magnitude of
the disturbance vector 1. For instance,in the case of inertial motion of the particle M on
a smooth p seudosphere, tile disturbance vector can be represented by tilt’ components e
and v which are co-directional and normal to t he HINE Pt D[ ( geodesic) trajectory. The
component v cot responds to the ignorable coordinate, and its evolution is described by
Eq.(49) which reduces to:

4+ 2WoGor =0 {53)

The exponential instability of v when Go = Const < 0 leads to chaos. At the same time,
the position coordinate € is eliminated from Eq.(53) and it can be found from the energy
conservation: ,
€= €y (54)
0
where So and € are the initial conditionsat t = O for the motion velocity along the
trajectory, and the position coordinate of the disturbance vector, respectively. In spite
of some limitations of the results described above (the conditions for chaos are sufficient,
but not necessary, the forces Q" dependonly upon coordinates, butnotupon velocities),
they nevertheless elucidate physical origin of orbital instability, chaos, and consequently,

of unpredictability of motions in classical dynamics.
3. Hadamard’s Instability
a. General Remarks

The results presented in the previous section can be applied to distributed systems
after a discretization technique which reduces them to a finite-dimensional systems. For
instance, as noticed by Arnold ( 1988), an inviscid stationary flow with a smooth velocity
field:

v = Asin Z+4+ CcosY, vy = Bsin X+ 4 cos Z,v. = CsinY + Bcos X (55)

has chaotic trajectories X(t), Y(t), Z(t) of fluid particles (Lagrangian turbulence) due to
negative curvature of the configuration space which is obtained as a finite-dimensional
approximation of a continuum. However, there are some special types of instability in
distributed systems which can be lost in the course of the discretization, and they will be

focused in this section.




As noticed in the previous section,the long-term instability which may lead to chaos.
is associated with the orbital instability,i.e. with the instability of ignorable coordinates.
However, in distributed systems desecribed by partial differential equations,there is another
possibility for long-term instability which is associated with the decrease of scale of motions,
ie. with the growth of spatial derivates of the system parameters. In mathematical
terms it nl(als a failure of differentiability of the solutions to the corresponding governing
equations. However, an unlimited growth of spatial derivates must be consistent with
the boundedness of energy. Indeed, the stresses in continuous media depend not upon
displacements or velocities. but upon their gradients, i.e. upon their space derivatives.
Hence, We have to find such situations when an unlimited growth of these derivative does

not lead to unbounded stresses.

Turning to geometry of displacements and their gradients in continua, let us introduce
the displacement vector:
u=r1—-r, (56)

where roand r are the radii-vectors of the same particle before and after deformation,
respectively. In elastic bodies, the stress tensor depends upon the displacement gracdien

V u via the strain tensor e:

-1

(W]

1 T T
€= 5[ u + (Vu) +u~(vu)1: {vr-(vr) -9 (

where ¥ is the unit (the. initial state) tensor, while the current state metric tensor is defined
as:

g = 2 + (58)

The tensor-gradient §7 r in (57) can be decomposed as:

vr = CB (39)
where C isa symmetric tensor:
1/2
C=+[vr'(vr)] (60)
and B is an orthogonal tensor:
212 .
B = +[vr-(vr)7] (vr)' = ( B-), det B=| (61)
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.4s follows from (60), the strain tensor

1,
f=5w—u) (62)

and consequently, the stress tensor depends only upon tile syvmmetric part of the tensor-
gradient 7 r , and does not depend upon its orthogonal component B which corresponds
to rigid rotations of elementary volumes. However, indirectly an unlimited growth of these
rotations can lead to unbounded stresses in three-dimensional elastic bodies. Indeed. as

follows from theidentity:
7 xyr = 0 (63)

the components of thetensor-gradientV r must satisfy six additional constraints which
are called the compatibility equations. Loosely speaking, they follow from the require-
ment that after deformations the continuum should not have any “holes” or ‘“cracks’. In
geometrical terms, Eqs.(62) represent the fact that after deformations, the actual space

remain Euclidean, i.e. the curvaturetensor iS zero:
R =20 (64)

However, six constraints imposed upon the tensor-gradient 57 r by Eqs. (63), or (64) are

also not independent. Indeed, according to another identity:

V-vxygr=0 (63)

which holds even if
VXYr#0 (66)

and which is equivalent to three scalar equations, only three of the six constraints (63)
are true independent. In geometrical terms, Eg. (63) can be associated with the Bianchi
identities, (W. Fluge, 1962).

Thus, nine components of the vector-gradient §7 r must satisfy three independent
compatibility equations, and therefore, if all six components of the stress tensor eare
given, then the remaining three components of 17 r and consequently, al therigid rotations.
will be uniquely defined. This means that in isotropic three- dimensional elastic bodies.an
unlimited decrease of scale of motions would lead to unbounded stresses which is physically

impossible.
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Let us turn to one-dimensional continua (filaments). In this case, rigid rotations define
the external geometry of the model (the rotations about the binormalto the filament
correspond to tile first curvature, and the rotations aboutthe tangent to the filament
correspond to the second curvature, or twist, Fig. 3), and they do not depend upon the
elongations of tile curve which define the stress. Indeed.letus introduce the filament

equation in the form:

9:
oy

where 1, plays the role of an Eulerian coordinate. Then the motions associated with changes

r=r(y.t), o] =1 (67)

of the internal geometry, and therefore, the stresses are described by the function:
W o= p(s,t) (68)

where s is a Lagrangian coordinate of individual particle.

At the same time, the curvatures of the filament configurations can be expressed as:

, ad ar e
0y = |f7_2_'l| _ (55 % 55%) - 48 69

Consequently, both curvatures are independent upon the internal geometry characterized
by (68 ), andin particular, upon the stress defined by the derivative dv/0s.

This means that unlimited growth of the curvature may not cause stress at all, and there-
fore, the instability in the form of unlimited decrease of scale of motions is possible (Fig.
3b).

The situation becomes more complicated in two-dimensional continua (films, mem-
branes ). Here the internal geometry is defined by two-dimensional versions of Egqs. (56)-
(63), while the external geometry is described by the coefficients of the second fundamental

form: ‘
_ d*r ‘n i =
= ‘—al/)‘.aw) L] v]a ==

where y'are coordinates onthe surface, and n is the unit normal to the surface.

bi; 1,2 (70)

However, these coefficients are not independent: they are coupled with the strains by
three compatibility equations:

biabaz — b3, = T,T%,90s ~ F?lrgzgaﬂ"
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1 9%gn 9% g1 10922 5 )
2 awu)z Ot VGt B Olu(1)7~(1.é‘ﬂ..f =1,2) 171
dby Jbiy \ ‘
_ 2 ‘ 2 - . -
') - O - rlzb;l - I‘;(b‘ZZ + (r,z - Ff,)bn‘(z = 1.2) 123
where
giv = 142910 = 2600 g = Uy + 26 173)

The two-dimensional Christoffel symbols are:

1 ./ 9q dg 1)
no 2 onld ' ) _ ) o -
rl] - 29 <0u)(1) + O‘(u“) Ou)(l)> » (Il.l.J = ,2) (1-1)

while
gl = g 117! (75)

Hence, in general, three coetlicients b,, are defined by the strains €., from the three equa-
tions (71 ) and(72), and consequently, change in bi; affects the strains €i;-

Nevertheless, there are situations when the unlimited growth of curvature may not
effect the stress at all. In order to describe this case, recallthat on a surface with negative

or zero Gaussian curvature
biybyg — by

drngaz — !]fz

there exists a family of asymptotical lines where the second fundamental form is equal to

G = (76)

Z€Ero:

b” ta.x12 ¢ +. 2b|2 tan ¢ + b‘22 =0 (77)

while the angle ¢ between an asymptotical line and the coordinate line ¥1 is found as:

tan ¢ = — E‘.g:i: L : 1 2,(1)” +0) (78)
1 1

Selecting the coordinate ¥; as an asymptotic line, one obtains:
tan¢ = 0 (79)

and, as follows from Egqs. (77) and (78):

b2 = o (80)
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Now it is obvious that alongthe asymptotic line tile curvature by, canbe selected arbitrarily

without affecting the parameters of theinternal geometry g4,,,and consequently, the stress.

Indeed, since b2z = 0O, by, is eliminated from Eq. (71). Inadditionto that,as follows
from Eq. (72):
by, dbyy | ‘ i
oo T pam = Fubn + (TH = T b (31)
b ,
5‘)—% Phbu + (T3, = Thy) bp (32)

The (derivative Oby, /0w, is notdefined, i.e. that asymptotic line o, coincides with the

characteristic of the partial differential equations(81) and (82).

This means that the curvature by1can be chosen arbitranly along the asymptotic
lines of the surface without effecting any parameters of the film including stresses. In other
words, an unlimited growth of the curvature by, may be consistent with the unboundedness
of stresses and it can be associated with the formation of wrinkles along the asymptotic

lines.

So far we were concerned with elastic continua. Turning to fluids, one should recall
that their stresses depend only upon the velocities, butnot upon the displacements. That
is why an unlimited growth of any component of the displacement vector (M), or of
the tensor-gradient (59) is consistent with the unboundedness of stresses, and it canbe

associated with the Lagrangian turbulence.

In terms of velocities, the situation is different. In order to demonstrate that, recall
that in viscous fluid the stress tensor dependsupon the velocity gradientsy v via the
time derivative of the strain tensor (57). The velocity gradient <7 v has the same type of
structure as the vector-gradient 57 r: it can be {Decomposed into a symmetric tensor of the
rate. of strain:

¢ = 2(v + [9v)] (3)

and an anti-symmetric tensor:

1
w =3lyv - (vv)7] (s4)
which is equivalent to the vector of vortex:

1 1 .
w = -5Curlv = §v><v (83)

=~
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Since

Uxgv=0and - xgv=0 (evenif) ¢ x 7v #0. {87)

one comes to the same conclusion as in the case of the vector-gradient 7 r (see Eqs. (63)
and (63): nine components of the tensors & and o are coupled by three compatibility
equations. Hence, six components of the rate of strain tensor ¢ uniquely define the veloeity
gracient, and for that reason, anunlimited growth of the vortices in viscous fluids wowld

lead to unlimited growth of stresses.

The situation becomes different in inviseid fluids where stress is defined only by a
scalar - the divergency sy x v. But since any velocity field canbe uniquely defined based
upon two independent components of its gradient 7 v, which are the divergency sy x v and
the vorticity 57 x v, one concludes that an unlimited growth of vorticity ininviscid fluid
may not lead to unbounded stresses. This conclusion can be loosely applied to motions
of viscous fluids characterized by high Reynolds mumnber when viscous stress are ignorable
incomparison to the inertia forces. In this case an *unlimited” growth of vortices can be
associated with turbulence.

Thus, in this section we have analyzed a possibility “in principle” of an unlimited
decrease of scale of motions in continua from the viewpoint of a consistency of thistype
of instability with the boundedness of stresses and energy. This means that if such an
instability exists, it can be found only in one-or two-dimensions] elastic models, or in fluid

motions with high Reynolds number.
b. Failure of Hyperbolicity in Distributed Systems

Mathematical models of continua are based on the assumption that the functions
describing their states can be differentiated “as many times as necessary” atany point
exclusive of some special surfaces of discontinwities simulating shock waves or coinciding
with tile characteristics of the governing equations. In other words, these functions must
be at least piece-wise differentiable. From the physical viewpoint it means that any point
as a center of mass of an infinitesimal volume represents all the properties of this vol-

ume. Obviously, the assumption about smoothness of the functions allows us to use tile
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mathematical technique of differentiable equations.

However, this artificial mathematicallimitation follows neither from the principles of
mechanics nor from the definition of a continuum. The price paid for suchamathema -
ical convenience is instability ((in tilt’ class of smooth functions) of the solutions to the
corresponding governing equations in some regions of the parameters. T]is wstability is
characterized by unlimited decrease of the scale of the motions, in the course of which the
derivatives of the corresponding functions tend to infinity although the functions them -
selves remain finite. In other words. the solution tends to “go out” from the class of

different 1able functions.

Most of the instability phenomena leading to unlimited decreasing of the scale of
continua motions are associated with the failure of hyperbolicity of the corresponding
governing equations, i.e., with tilt’ appearance of imaginary characteristic speeds. ( Zak,
1982h,c)

In order to illustrate this, we will start with the governing equations of motion of

elastic bodies in the following form:

O0%u, ki a[ oIl ]+ .
Py = —|—5—| F,i=123 (88)
ot? ?__;01:] 0('3;)‘)

where u, are the displacements, 11 is the potential energy of strains, p is the density, F, are

the external forces, and Zi are the material coordinates, posing the initial value problem:

u: I {: x]-g- $in /\OII If I.C]ls;lto | (@)
=0 =0° lfl.l,‘"l>.l?0,l=1,2,3
Ju
(‘5;),=o i = 1,2,3. (90)
with the parameter Ao can be made as large as necessary, i.e.,
Ao — 20 (91)
The region of the initial disturbance canbe arbitrarily shrunk, i.e.,
lro] — 0 (92)
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Consequently, the initial disturbances u, and their first derivatives du,/dr; can be made
as small as necessary. It means that for the corresponding infinitesimal period of time At
the equations (88) can be linearized and the solution subject to the initial conditions (89)

can be sought in the form: u; = (£, t). ie.,

D%u, 0 92 u, Ju
g ——— = a 2 while _ "’ =0 93
Po dtz L Ly} Ol'f 0.1‘ { )
J=1 I l#1
where
01l \
a“’ = 0 'h.‘_l. 0 ()NL (04)
(5 )05 ) 2w 2oy
L ".rl

Let us assume that one of the eigenvalues of the matrix a,; is negative:
/\1 < 0 9:))
Then the solution to the equation (93) will contain the term:

A
1 o L;0L1A¢

-5 € Sill/\g.r \ 96)

which tends to infinity if Ag — oo within an arbitrary short period of time Aty and within

an infinitesimal volume around the point Zi. Hence, one arrives at the following situation:
[ui] — o0, (97)
in spite of the fact that

[uyl — 0 (98)

t==0
However, strictly speaking, because of utilization of the governing equation(88)in alin-

earized form, the condition (98) must be weakened:
luil # O if lui] | - =10 (99)
t==0

The formula (99) shows that the appearance of negative eigen-values of the matrix (94),

and consequently, imaginary characteristic roots of the governing equation (88) (failure of
its hyperbolicity)leads to the violation of a continuous dependence between the initial an'd
transient disturbances during an arbitrary short period of time and within an arbitrarily
selected volume. This type of instability was first observed by .7, Hadamard in connection
wit h the ill- posedness of the Cauchy problem for the Laplace equation. Further results
with application,to the instability of a string, il and free surfaces of elastic bodies were
reported by Zak, (1982h,c.)




The result formulated above was obtained under specially selected initial conditions

( S9), but it canbe generalized toinclude any initial conditions. Indeed, for equations(93)

let the initial conditions be arbitrarily defined by:

=0 = “?0 {100)
and the corresponding solution is:
u, = filx.t) (101)
By altering the initial conditions to:
u(0, t) = ud + u?o (102)

where U, is defined in (89 ), we observe from the preceding argument by superposition
that vanishingly small change in the initial conditions would lead to unboundedly large

solutions.

To obtain a geometrical interpretation of the above described instability, let usturn
to expression (97)of the solution and note that if the second derivatives 9%u,/dt?.0u,/0r?
are of order Ao, then the first derivatives Ou;/0t, Ou,/0z;are of order 1, and u, are of
order 1/Ao. Hence, the period of time Aty can be selected in such a way that the second
derivatives will be as large as necessary, but the first derivatives and u, are still sufficiently
small. Taking into account that the original governing equation (S8) is quasi-linear with
respect to the second derivatives and, therefore, the linearization does not impose any
restrictions on their values, onecan conclude that the Linearized equation (93) is valid
for the solution during the above- mentioned period of time At., Turning to the formula
( 97) one can now interpret the solution by the function having an infinitesimal amplitude
and changing its signs with an infinite frequency ( v = A\g— o0). The first derivatives of
this function 9i/0, 0i/xicanbe small and change their signs by finite jumps (with the
same infinite frequency v)so thatthe second derivatives 9%u;/dt?, 9% u,/dx? a the points
of such jumps are infinite. Thus, within an arbitrary small volume there is located an
arbitrary large number of points at which tile strains have jumps. From the mathematical
point of view, the function describing such a field of displacements Yi is considered as a
continuous but non-differentiable function. This function can be simulated, for instance

by the function with a multivalued derivative.
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C. THE CRITERIA OF HADAMARD’S INSTABILIT%

Let us fix an arbitrary point M and an arbitrary direction r, at this point in an elastic
body. According to the above-formulated result, the instability at the point M in the
x-direction results from the negative eigenvalues of the matrix:
{ 0Tl

Ouy Ouy Auy Ay

0(81'1)0(811 ’g;-lL‘g;l

Assuming that unperturbed state at this point is characterized by the initial stresses:

(l,)

(103)

T, # 0,7y, =0, Ty, =0,j = 1,23 (104)
but zero strains:
Ou.» . 0 0 0
o5, = 0, te.e), = 0. 9], = 0, 9], (105)
0

let us utilize the following expression for a variation of the specific potential energy from
the initially stressed defined by (104 .

6 = Tnoden + Tizdyiz + Tisdviz = - ete. = T, b, (106)

Taking into account that:

_ Ouy 1]/ 0u, : Ous \ ? ouy\ '’
T on T Kr) * (5‘> * (5‘”

c’)u.- . .
i = E + -cete. (1i=1,2,3),1e.,
. Ou, ~0u1 0112 .aUQ OU1 .0u~,
0 = |1 ] é
€ ( + 011) or, t dr, bc’);z:g + or,y é(’)xl '
. .c’)u.- .
b‘)’“ = b-a';—]' (l=1,2,3)
T, (107)
one obtains for
Jui , 4
0.’17)
aT,
_ 0 11
any = T]] + afll ) (108)
‘ OT. 10T,
_ 0 12 0 et 12
azz = Ty, + e T, + 5 Derg (109)
JdT 10T
_ 0 13 Q ; 13
azy = Tu + 07” = T” + 20613 y (110)
a;z = a2 = a3 = ay = ap = az = 0 (111)




where the stresses T, arerelatedtothe lot-al cartesian coordinates .r,, £2,.ry a the point
M.

Now the eigenvalues of the matrix (106) can be written in the form:

Ay =a, . ie,
OT .
Moo= T+ 06““ (112}
0T12 1 0T12
Ao = TO =t = 70 - (113)
? not 0712 not 2 Deyy
OTH 1 aTm
Ay o= TY + = T% + = : (114)
’ H 713 " 2 Jeys
Hence, the criteria of instability are:
aT
T < - ??e_llll’ (113)
oT
T, < - 07:: , (116)
a7,
T?, 07:: . (117)

Each inequality leads to the failure of differentiability of the corresponding component of

strains: e;1,€12, 01613, while the potential energy II(e,;) has a local maximum.

Recall that all the shove-fornmlated results are related to an arbitrary point Vfy and
-arbitrary selected direction xI, with the unidirectional initial stress T};.

In the general case when all the components of the initial stresses are non-zero:
T) # 0 (119)
one can decompose them into spherical and deviatoric parts:
TS = iToE + T3, T = DevT)) (119)

where E is the unit tensor, and

To =

oY

3 3
Sr1,, >.T;=0 (120)
1=1 =1
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Now Eq.( 106) can be rewritten in the following form:

6N = T0660 4 Tl‘16€11 + Tlt.z(‘).ﬂg + o-ete. = Tgbfo -+ T:JO‘(,J 1121)

where ¢, is the spherical part of tile strain tensor:

3
1 v~
= 3 € (122)
1=
andinstead of Eqs. ( 10S) - (110), one obtains:
aTy
ayy = T]Ol + bf:ll
: 1 9T}
ap = TV, + ;‘é‘)‘f:—z
1 0T}
ass = T)) + 35;:: (123)

Consequently, the sufficient conditions of the instability in some directions at the fixed
point for an isotropical elastic material for which the derivatives 97T; /O¢;; do not depend

on a selected direction ry :

- oT,

T < - ae,],]‘ (124)
. 10T .
T), < -5 c')c]]:’ (123)
5 1073 .
T <=3 (126)

where TP, is one of the principle deviatoric stresses,

The instability emerges in any direction if these inequalities are valid for al the prin-
ciple deviatoric stresses T2:

l (')T,'J'

Ti< ~55 0D (127)
because usually oT oT

L} uul? A ' 128

Do > Je,, ( # J). ( )

For the Hook’s material the criteria of the instability are expressed in terms of Young's

modules E and Poisson’s ratio v since

aT,,' E(| - V) OT,J' E
dei; ) (r+ 1)1 - 2v) 0(,1 T v+

2G (129)
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if the initial stress tensor is spherical (T, = p), whereE. G anduarethe Young’s and

shear mod ulic,and v is the Poisson’s ration, respectively.

d. Boundaries of Applicability of the Classical Models of Distributed Systems

All the results discusser above were based on formal analysis of mathematical inodels
of elastic materials, and their practical usefulness has to be demonstrated. The most
obvious and visual application of these results canbe fundin the area of one andtwo-
dimensional models such as strings, membranes, etc. whose states are defined notonly
by internal geometry (strains ), but also by external geometry (shape).As shown in the
section @), in this model, unlimited decrease of the scale of motions may be consistent with
the boundedness of stresses and energy. The problem of the shape instability there oceurs
as a result of any local compression and manifests itself in wrinkling in the course of which

the shape looses its smoothness.
Examples

(a) For one-dimensional continua such as an ideally flexible inextensible string, two
types of the characteristic speeds are obtained ( Zak, M., 1968):

1
2
A = :t<z) , (130)
P
4
A3 ='ﬂ:(z + f—) : (131)
p Q2

where T is the tension, p is the linear density,§ is the first curvature of the string’s shape.
and F, is the normal component of the external tracking force. These characteristic speeds

correspond to discontinuities of the curvature and twist of the string, respectively (Fig. 4).

These conditions of the instability of the string’'s shape following from the failure of
hyperbolicity are given in the form:

T<O, (132)
F
" 133
T < Q (133)



The inequality ( 131) expresses the well-known fact that a compressed string is unstable
(the 10ss of the stability of the first curvature, Fig 1). The shape of such a string cannot
be described by differentiable functions, and, theoretically, that string can be rolled up
in a point. The inequality ( 132) shows that even a stretched string can be unstable, if

subjected to the corresponding tracking force (theloss of tile stability of the twist ).

These results are generalized to a one-dimensional. ideally flexible pipe within which
an ideal fluid flows ( Zak, M.1982b,¢)

1

I ! .
u | il w2

ettt (p+ )
2
T Fn /’Pl UZ>)/

1
’\1.2

Il

+ o'
pre (134)

p!

,\l = ——u ( + ‘
3 p+p! p+p! (p+p)Q  (p+pt)°

where T is the tension referred to the entire pipe's cross- section, p! is the linear density of

the fluid, and u is the velocity of the fluid.

Then, the condit ions of the failure of hyperbolicity are given by

1
PP -
L 13
(p+p!) (133)
F, pp!
T < =% 4+ ———u? 136
@ (papy .

This means that a flow within the pipe destabilizes its shape. In orderto illustrate the
last results, let us consider a vertical, ideally flexible, inextensible pipe with a free lower
end suspended in the gravity field, Assuming that the flow within this pipe has constant
velocity, U., letusdefinethe area of the instability (Fig. 5). The tension T referred tot he

entire pipe’'s cross-section is given by

T = pgC(l - 1) (137)

where 1 is the length of the pipe, x is the coordinate along the length of the pipe, and
C is'the ratio of the area of the cross-section occupied by the pipe's walls relative to the
entire cross-sectional area, Substituting (3.9) into (3.7), one obtains the unstable area of

the pipe:
ul p
> . > —_— ______0 = —, 1
L > >1 PEPTIR € o (138)
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Hence, for the ideal flexible pipe, the free end is always unstable. ( Such a phenomenon
is well known from the experiments.) Inthe limit case o — O, when tile pipe can be
considered as a string, the unstable area is concentrated around the free end. As shown
by Zak, M.1970,1983, such an instability manifests itself in an accumulation of energy at

the free end (snap of a whip).

(1)) For two-dimensional continua, such as membranes, films, and nets, as shown by
Zak. M., 1979, the characteristic speed corresponding to discontinuities of the shape ( i.e..

the coeflicients of the second fundamental formi ) is given by

Mo = % <-p—) (139)

where T,, is the tension normal to the front of the wave of a discontinuity.

Hence, the failure of hyperbolicity emergesin the region where at least one of the
principal stresses is negative. Such a failure manifests itself information of wrinkles. The
wrinkles can be observed, for instance, in the course of shearing, twisting, or bending of a
membrane (Fig. 6). If both of the principal stresses are negative, theneven the lines of
wrinkles lose their smoothness, ant] a membrane canbe rolled up in apoint.

Recall that in contrast to one dimensional continua where the shape parameters ( cur-
vature and twist) can be changed independently from the elongations, in two dimensional
continua there are some limitations imposed on the changes of the shape in the form of
the equations of compatibility with the changes of strains (the Gauss equations (71) and
(72). Asfollows from Eq. (78) - (82), at the points of negative Gaussion curvature, there
are two directions “of possible shape wave propagations (Fig. 78). At the point of zero
Gaussion curvature, there is only one such a direciton (Fig, 7c). At last, at the points of

positive Gaussion curvature, the shape discontinuities are impossible, (Figure 7d).

Thus the instability of the shape defined in terms of the coefficients of the second
fun'damental form b,; is possible only if a compression occurs in the direction normal to

the asymptotic line of the surface at the corresponding point.

Slightly different, criteria of the Hadamard’s instability can be obtained for liquid films

considered ast wo-dimensional continua, ( Zak, M.,1985a).
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The Hadamard’s instability for three-dimension continua were studied by Zak, M.,
1982a.b.f. In this paper we will focus ourattention onthe instability of asurface separating

an elastic bodyandideal fluid, ( Fig. 9).

As shown by Zak. M., 10 82D, the characteristic speed of waves transporting disconti-

nuities of the surface shape is expressed as:

02 1 E PP
t = —— v £/ —— T, + = ~ - 2 1
S \/m + p2 FaTE T e o

in which py, E,v and,, (Taractenize the density, Young's modules, the Poisson’s ratio

and the stress normal to the front of the propagating wave of the elastic bocly,and p, and

v characterize the density and the velocity of the fluid.

Hence, the Hadamand’s instability occurs if:

P12 2 E
Ton< ———— - 141
" et T 214 ()

Asa particular case of Eq. (140), one can arrive at the Hadamard's instability of surface

of tangential jump at velocity inaninviscidfluid (Fig, 9)
1 — 1
A= S |(ug -u)E \/~(uz—uu)‘] = = (w2 - uy)(1+9) (142)

This is a well-known result stating that tangential jumps of velocities in inviscid fluids

are always unstable. (In fluid mechanics this phenomenon is called Kelvin-Helmholtz

instability).
4. Cumulative Effects
a. Degenerating Hyperbolic Equations

A cumulative effect can be introduced as a pre-instability state which is associated with
the change of type of governing equations from hyperbolicto parabolic when at least one
of the characteristic speed becomes zero. Actually this stock represents the boundary for
the Hadamard’s instability, and depending on how the motion approaches this boundary,
it may remain stable, or unstable. The sim plest example of thistype of situation is the
governing equation for a vertical ideally flexible inextensible string with a free lower end
suspended in a gravity field, Fig, 8.Projecting this equation into the horizontal direction.

one arrives at the governing equations for small transverse motion of the string:
J%r T &%

pulliing = = 143
5@t o1 =0 (143)
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with the characteristic speeds:
—_
T
[ R (144)
/)
Since the tension of the string T vanish at the free end
T = at S =1 (143)

where [ is the leng hof the string, the characteristic speeds 144) vanish too at S = 1, and

therefore, Eq. ( 143) degenerate into parabolic type atthe very end of the string.

As a second example, consider a one-dimensional model of the shear wave propagation

in a soil column of the height H:

- or

d%u 0 ,Ou
p-a—t7 = 5;(6 > (146)

where p is tile density, u is the horizontal (Displacement, G is the shear modules, t is time,

and r is the vertical coordinate with the origin at the surface.

Ignoring the small shear stresses at the surface, the shear modules can he taken in the
(147)

following form:
G = 0.5pgz .

(149)

Since
G =0 atr = 0,

Egq. ( 146) degenerates into parabolic type at the soil surface.

For the sake of concreteness, we will investigate the solution to Eq. (146) subject to

the initial and boundary conditions formulat ed below:
(150)

u(z, 0) = (r)
Thus, it is assumed that the soil column is fixed at r = H and there is no shear stress at

the surface, i.e., at £ = O.
One should notice that for simplicity in this model all the damping and creep effects

are ignored.




b. Uniqueness of the Solution
Let Us assume thatthere exists two solutions of the problem under cousideration:
w(r.t)and U* (X t) and let us examine the difference:
(e t) = u'(r,t) - u''(r. t) {131)

The function u* (x.t) satisfied Eq. (146) with additional homogeneous conditions:

o%u* Jd Ju*
= - b (1-.).
Por T s <C 0I> >
0 *
ut(r,0) = "Z;T (£, 0) = 0 (133)
W(H.t) = o, %"I— 0, t) = 0 (154)

For the total energy, one gets:

1 H auu 2 + au‘ 2
E(t) = E(0) = 5/ {G((%) P ot dr = 0 (155)
= J0 t=0
If the solution is soughtin the open interval
0 < r<H (156)

which does not include the surface pointr = O, then the uniqueness of the solution is

obvious.

However, this proof cannot be applied to the closed interval
0 <z <H (157)
which includes the surface point r = O., Indeed, in this case according to equation ( 148):
G =0atr =0 {(138) -
and any arbitrarily selected derivative Ju./Jrat £ = O will satisfy the equality in Eq.

(155).

Thus, for the closed interval ( 157),the uniqueness of the solution can be guaranteed
only in the claw of functions having continuous [derivative du* /Jz, otherwise the infinite
number of different solutions can be offered to satisfy equations (146) with the conditions
(145) and (150) in the interval (157). As will be shown in the following, the artificial math-
ematical restriction aboutthe continuity of the derivative Ju ® /dx excludes such import ant

physical phenomena as cumulative effect.
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From the mathematical point of view,the singularity at the point r = O isassociated
with the fact that the original equation is hyperbolicinthe open interval ( 136), but
degenerates into a parabolic equation at the point ¢+ = 0. The physical meaning o f

this singularity will be discussed in the following sectiomn.

C. Stability of the Solution

Starting with the conditions ( 149),let us assume that

ey 2O for 0 <z}, <z <s3< H (159)
' {= o forr < ry,and s > iy :
w(r)lo<e<t = 0 (160)

a(t) = 0,t 20 (161)

i.e, we consider an initial dist urbancein a local interval [r},.r3] contained within the
interval [0, H].

Fromthe differential equation of the characteristics, one finds the equations of the

characteristics passing through z,and x,:

%3 de 3 de
¢ = / ,t" ____/
T, \/G(f)/‘P t 2 VG(f)/“P
0 < ry < 29 < H

Here x, and X,are the coordinates of the leading and trailing fronts of the discontinuity

wave of derivatives 9%u/dt? and 9%*u/dr?, where

£y = xy, Iy = xy att =0

Iy = Iy = O
because
dr, drq
—_— - = =0 163
dt dt (163)
I|=0 1‘2:0




Two cases may arise: (A) The improper integral

o ind,
—~»‘:_}—i;: < xforr—0 {164)

ie., converges, which then means that coincidence of tilt’ characteristics occurs for finite
t =t*. Then
Ju

Ib—t—]——*oof()rt—-*t' < 20 (163)

From the mathematical viewpoint this instability predicts a cuumulation of the shear strain
energy at the soil surfacer= 0. At tile same time, it illustrates the ambiguity in the

solution which has been remarkedint he investigation of equation ( 15).

(El ) If the improper integral ( 164)divergesthen the characteristics ( 162) coincide at

t* — oo and the cumulation effect does not occur.

For the particular case of soil where the shear modulus is given in the form ( 167) the
integral ( 164) converges andthe time t. definingthe moment of the formation of the shear

strain energy cumulation at the soil surface is

In the general case when the shear modulus is a more complicated function of the elevation,

the cumulative effect occurs if

G > (1£2+(7

where €1, €2 are arbitrarily small positive constraints, because then the integral ( 164) con-

verges.
do Snap of aWhip

The results presented shove can be applied to Eq. ( 163) [Inscribing transverse oscil-
lations of a vertical ideally flexibleinextensible string with a free lower end suspended in

a gtavity field.
The tension of the string due to gravity is given by the following equation

T = ~v(I-1r) (166)
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where v, are the specific weight and lengthof the st ring.

Referring to the formula ( 144), one concludes that the characteristic speed of trans-

verse displacements tends to zero at the free end:
Tloct = 0. %34 — 0if & — 1. (167)

In other words, for the small transverse displacements of the string, the governing equation

is of hyperbolic type only in the open interval, excluding the end:
0 <« < | {168)

As shown in the previous section, in this open interval there exists a unique stable solution.

However, in the closed interval, including the end
0 <r <1, (169)

the solution is not unique and tilt're are unstable solutions if the improper integral

I

/ de .
TE)/a 7" 1o

o

converges for r— 1.

This result has a very clear physical interpretation: Suppose that an isolated trans-
verse wave of small amplitude was generated at the point of suspension ( Figure5b). The
speecd of propagation of the leading front of the transverse wave will be smaller than the
speed of the trailing front because the tension decreases from the point of suspension to
the free end (see equations (144) and ( 166). Hence, the length of the above wave will be
decreasing and in some cases(see (170)) will tend to zero. Then according to the law of
conservation of enefgy, the specific kinetic energy per unit of length will tend to infinity

producing a snap (shap of a whip).

It can be easily verified by substituting (166) in (170) that for the string in the gravity

field the integral (170) converges, i.e., the instability in the form of snap occurs.

The same type of instability asaresult of cumulation of energy near the boundary of
the failure of hyperbolicity can exist in two. and three-dimensional models in the domains
where the inequalities (116), (11 7), ( 118) are close enough to the corresponding equalities.
Zak, M.(1982¢).
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e. Failure of Lipschitz Conditions

The cumulative effects are accompanied by a very interesting mathematical phe-

nomenon: failure of Lipschitz conditions for the differential equations of characteristics:

ds ) -
o = 4= AL (171)

Indeed, if the characteristic speed follows from Eq. (143) or Eq. (146), i.e.

T ;
A= :L\/g, , OTA = + —; , respectively (172)
then _
12} 10N
o el 0w s sy (47
if .
ON?

As follows from Eqs. (147), and (166),

OA? IN?
IT = 0.5g > 0,and |—5—| = g > 0 ,respectively (174)
£

Hence, the loss of tile uniqueness of the solution to Eqs. (143) and (146) can be formally
associ ated with the failure of the Lipschitz condition at the point where the characteristies

coincide.

In general, failure of the Lipschitz conditions in dynamics was analyzed by Zak, M.

(19ss,1992, 1993a,b).
5. Comments On Other Types of Instability In Dynamics

As follows from the previous section, the Hadamard Instability occurs in idealized
models such as elastic bodies, or ideal fluids where the energy dissipation can be ignored.
Tile main property of this type of instability is that the solution becomes unbounded
during a finite time interval (t < oo0). However, tilt'It’ are many other types of instabil-
ity (especially, in fluid dynamics) which also leads to unlimited deerease of the scale of
motion, although they arenotso”strong” as the Hadamard instability: the solution be-
comes unbounded only at ¢t — co. Since al of this Lyapunov-type of instabilities are well

represented in literature, we will give here onlv a brief description of them.
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a. Thermal Instability arises whena fluid is heated from below. When the tem-
perature difference across the fluid layer is great enough, the stability effects of viscosity
and tilt’mlal conductivity are overcome by the destabilizing buoyancy, and the instability

occursin the form of a thermal convection.

b. Centrificial Instability occursina fluid owing to the dynamical effects of rotation
or of streamline curvature. For instance, as shown by Rayleigh, an invicid flow between
two rotating coaxial cylinders is unstable if the angular momentum |2 | should decrease
anywhere inside the internal ry < r < ry, where Q is the angular velocity of rotation of

the fluid, r;, and 2 are the radii of tile coaxial cylinders.

[t can be demonstrated that in general, centrificial instability arose from adverse

distributions of angular momentum.

Rayleigh-Taylor instability derives from the character of the equilibriun of anincom-
pressible heavy fluid of variable density. For instance, it is shown, that in the case of

variable density of exponential distribution
p = po €7, 8 = Const (175)
where z is the vtv-tics] coordinate, the equil brium is unstable if
g >0 (176)
i.e., if the heavier layers are abovethe lighter layers,

C. Reynolds Instability results from a disbalance between the inertid and viscus
forces. Itoceurs when the Reynolds number (R) exceeds certain critical values which
depend upon the type of a flow and its boundary conditions. For a particular case of
inviseid shear flow (R — o00) with parallel streamlines, Rayleigh has shown that a necessary

condition for instability is that the basic velocity profile should have an inflection print.
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1. STABILIZATION PRINCIPLE

1. Instability As Inconsistency Between Models and Reality
a. General Remarks

It has been demonstrated in the previous section that there are some domains of
dynamical parameters where the motion cannot be predicted because of instability of tile
solutions to the corresponding governing equations. How can it be interpreted? Does it
mean that the Newton's laws are not adequate’? or is there something wrong with our
mathematical models? Inorder to answer these questions, we Will discuss some general
aspects of the concept of instability, and in particular, a degree to which it is an invariant
of motion. We will demonstrate that instability is anattribute of a mathematical model
rather than physical phenomenon, that it dependsupon tile frame of reference, upon the
classof functions in which the motion is described,andupon the way in whit-h the distances

between the basic and perturbed solutions is defined.
b. Instability Dependence Upon Metrics of Configuration Space

Let us turn to orbital instability discussed in the Section 2.2, The metric of con-
figuration space where the finite-degree-of-freedom dynamical system with N generalized
coordinates ¢*(: = 1, 20. . V) is represented by a unit-mass particle, was defined by Egs.
(27) and (28). Now there are at least two possible ways to define the distance between the
basic anti disturbed trajectories. Following Synge, ( 1926), we will consider tile distance in
kinematical and in kinematico-statistical sense. In the first case the corresponding points
on the trajectories arethose for which time t has the same value. Inthe second case tile
correspondence between points on the basic trajectory C and a disturbed trajectory C™*
is established by the condition that P (a point on C) shouldbe the foot of the geodesic
perpendicular let fail from P* (a point on C*) on C,i.e., here every point of the disturbed
curve is adjacent to the undisturbed curve ( regardless of the position of the moving par-
ticle at the instant t). As shown by Synge,both definition of stability are invariant with
respéct to coordinate transformation, and inboth cases the stability implies that the

corresponding distance between the curves Cand C* remains permanently small.

It is obvious that stability n the kinematical sense mplies stability in the kinematico-
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statical seine, but tile converse is nottrue. Indeed, consider the motion of a particle of

uni t mass on a plane under the influence of a force system derivable from a potent ial:

M= % L2

Sy . (177)
Writing down the equations of motion and solving them, we get:

o= 3t2 + At + B (178)

y = ¢Sm(t + «) (179)
where A, B, C and D are constants of integration.

Let the undisturbed motion be:
ro= e + t 1s0)
2

y = 0 1s1)

The motion is clearly unstable in the kinematical sense. However, from the viewpoint of
stability in the kinematic o-statical sense, the distance between corresponding points is:

PP =y = CSin(t + D) (182)
remains permanently small if C is small. Hence, there is stability in the kinematico- statical
sense.

Thus, the same motion canbe stable in one sense, and unstable in another, depending
upon the. way in which the distance between the trajectories is defined.

It should be noticed that in both cases, the metric of configuration space was the same

(see Egs. (27) and (28). However, as shown by Synge, 1926, for conservative systems. one
can introduce a configuration space with another metric.

g"“l = (E - r])a"l"

(183)
where @y are expressed by Eq. (27), and E is the total energy.

The system of motion trajectories here consists of all the geodesics of the manifold.
The correspondence between pointsonthe trajectories is fixed by the condition that the

arc O* P* should be equal to the arc, QP, where O and O* are arbitrarily selected origins
on the basic trajectory and any disturbed one, respectively,
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As shown by Synge, the problem of stability here (which is called stability in the
action sense) is that of the convergence of geodesics 1n Riemannian space. If two geodesics
pass through adjacent points in nearly parallel directions, the distance between points cm
the geodesics equidistant from the respectiveinitial points is either permanently small or
not. If not,there is instability. It appears that stability in the action sense may not be
equivalent to stability in the kinemat ico-statical sense for distances which change the total

energy E.

Turning to the example, Eq. ( 177), let us take the initial pointO at the origin of
coordinates and the initial point O* on the y axis. Then the disturbance being infinitesimal,

the (action) distance between corresponding points is:
P = (E-mY% y =27Y%¢ + 1) CSin(t + D) (184)

Hence, the motion is unstable in the action sense.
C. Instability Dependence Upon the Frame of Reference

Dynamical instability depends not only upon the metricin which the distances be-
tween trajectories are defined, but aso upon the frame of reference in which the motion is
described. Such a dependence was alreacdy noticed above (see Eqs. (55)). In this section
we will introduce and discuss an example which illustrates the dependence of criteria of

hydrodynamics stability and the onset of turbulence upon the frame of reference.

The linear theory of hydrodynamic stability is based upon Eulerian representation of
fluid motions in which the frame of reference is chosen a prioers.Strictly speaking, such a
representation provides criteria of stability for the velocity field rather than the fluidmo-
tion. The difference between these two types of st ability was illustrated by Arnold ( 1988),
who introduced flows with stable velocity fields and unstable trajectories ( Lagrangian
turbulence). If the classical (Eulerian)turbulence is associated with the instability of
streamlines then it is reasonable to study this instability in a streamline frame of refer-
ence in which streamlines form a family of initially unknown Eulerian coordinates, while
the remaining two Lagrangian coordinates are found from the compatibility conditions.
Such a frame of reference is completely defined by the motion, and therefore, it contains a

minimum of arbitrarily chosen parameters.
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First of al, we will show that criteria of stability in this frame of reference do not

necessarily coincide with the classical criteria which are derived from t he Orr- Sommerfeld
equation. For this purpose, we will mtroduce a small disturbance velocity field for mcom-

pressible plane flow in cartesian coordinates x. v

i(ar—J3¢)

Ve = o (y)e Yy = —dae y)e T a3 = const, (183)
where the prime denotes differentiation.
Tile angle 8 between streamlines and tile x-direction is
PRSLNERY : (186)
%

in which V(y) is the velocity profile of the basic flow. The orthogonal streamline coordinates
€,¢ are found from the system:

or Or . 0 : d
EE = H, cos 8, ac = —H,sin8, O_Z = H,siné, O_Z = H, cos 8, (187)

where H,and H,are the Lame coefficients defined by the compatibility conditions

(0%c/0€D¢ = 9*r/OCOE ete.)

08 o0 0H,  OH,
(01: + ay tan 6 )H] = tan GE-* — -0—y~ (135)
and
08 06 OH, 0H,
( ay + Or tall‘6 )H; = tan 97)y— — -51:-— . (189)

4s follows from Eqs. (186 - 189), the coordinate transformation

in general will depend on time. Hence, for the stream function one obtains

o= (y) el = g [y(e, ¢, tlelezec el (191)
i.e
I,y=const
oY Y
" v (192)
£,{=const

In other words, the stability criteria in frames x, y and &, { are not necessarily the same.
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This preliminary conclusion provides motivation to analyze criteria of hydrodynamic

stability in streamline coordinates.

Confining our investigation to aplaneincompressible inviscid flow one (It'rives the

momentum equations in streamline coordinates from the Lagrange equation:

dow  Ow 10p Jw 10p 193)
itoe a4y aE T ac T o |
in which the kinetic energy
1 ‘
W= 3Hf£2 (104)
and the velocity
V=W =HE{ V, = H{=0
while pand p are pressure and density, respectively.
The momentum equations read
ov OH, ov 10p
H — Vi — — ) = -=2Z£ 195
Lot <0t + 05) p OF 199
and v ooH 5
1
- (196)
Hl Hz af POC
The continuity equation follows from the condition
: . 0 -
div V = g e BE o« 0 - oo (197)
Equations (187)-( 189)are completed by the compatibility (Lame’s) equation
0/(1 0H 0(10H
_(_____2> + ~(~_‘ =0 (198)
9\ H, O ¢\ H; 9
Linearizing these equations with respect to an unperturbed shear flow:
V= V) (199)

and taking into account that for this flow the streamline coordinates coincide with the

cartesian coordinates:




one obtains after eliminating the pressure.

PV O*H O O'H
557wtV s+ VHO S = 0 (201)
HO¢ OtdC DEDC OEDC
oV . . OH,
B (¢) 0¢ 0 (202)
2 1 2 13
O | OH 1203)
o€* o¢?
where V, H,, and f{g are small perturbations of V, Hy, and H,, respectively,
If the solution for V is assumed to be of the form
Vo= V(()e'(C) elot=dn ,i3 = const, (204)
then, as follows from equations ('202) and ( 203),
Hy = — ¢/(¢) e'o€=90 | _ %}?‘ = —a6(() eot=sn, (205)

Substituting the values (204) and (205) into equation (201) one arrives atthe governing
equation for ¢(&):

o V(O
V(OWQ) - o

which is different from the Orr-Sommerfeld equation.

3
¢ "t =0, ¢c = < (206)
(41

If the basic flow V(y)is hounded by rigid walls:

Y =W, ¥y =y, (207)
then the streamlines at n = y,and { = ¥ must coincide with these walls, i.e.
3 = "I, oc n=0aty = yyandy = v2 (208)
m which 7 and n are the unit tangent and the unit normal vectors to the streamlines.

Hence

a =0, aty = yyandy = y, (209)



and therefore, with referencesto equations(203),
oGt = i) v 0. ol ) = 0. (210)
These equations express the boundary conditions for equations ( 206).

In order to show hat the stability criteria in streamline coordinates are different from
those given by the Orr-Sommerfeld equations let us select a special velocity profile V(y)
such that the coefficient of ¢’ in equation (206) reduces to a constant. Obviously, such a

profile must satisfy the first-order differential equation

v
T ,_ - =y = const. Ilny =0 ; (211)
V(V-0C)
and consequently
A
v = el (212)

while equations (206) for this profile reduces to

¢"“eye' - a*é = o (213)
Its general solution is
¢ = Crexp(hy) + Caexp(lay) | (214)
where
c c?y? , -
Alg = ?y + 4y + «? (213)

Substitution of the boundary conditions (210) into equation (214) leads to a system of

homogeneous equations:
Ciexp(Ay ) + Coexp(Aayn = O, Crexp(Ayz) + Corexp(Aayz) = O, (216)

and for a non-trival solution

exp(Myr)  exp(Aay)

= — A = 217
( ey exp(layg)y - P Aava) = explhiy + 291) = 0, (217)

det.

ie., A\ = A2; or, with reference to equation (215),

c = x:12aly = % cot . (218)




Since o and v are red, ¢ is imaginary, and therefore. solutions ( 205)are unstable fOr any

y1 and Y2-

Now we will show that tile Orr-Sommerfeld equation predicts stability for the same
profile. Indeed, substituting ¢ from equation ( 218 ) into equation ( 217) and separating the

real part of the velocity profile,one obtains
ReV = £ cotan (2 ay) . (219)

This profile has only one inflection point (at y = n/ (4 « )). Consequently, according to
the point-of-inflection criterion proved by Tollmien, any profile of the form ( 219) which
does includethe inflection point, i.e

OSyl.SySyz<Z; (220)
is stable.

It is important to emphasize that these two different results regarding the same ve-
locity profile are not mutually exclusive: the first is related to the stability of the fluid
motion referred to streamline coordinates, while the second is related to the stability of
the velocity field. But which one of these approaches is actually related to the onsetof
turbulence? The dynamics of fluid motion, and in particular, the stability of streamlines,
is directly related to the onset of turbulence inasmuch as the stability of particle trajec-
tories is directly related to the onset of Lagrangian turbulence. At the same time, the
stability of velocity fields is indirectly related to the onset of turbulence. That is why the
linearized version of the classical theory of stability cannot explain the instability of plane
Couette flows. In this connection it is worth noting that by an appropriate selection of
a,yy and ¥21n equations (219) and (2'20), the velocity profile, Eq. (219), canbe made as
close as necessary to a straight line, thereby predicting the instability of any flow which is

arbitrarily close to the Couette flow.
d. Instability Dependence Upon the Class of Functions

The properties of solutions to differential equations such as existence, uniqueness
and stability, have a mathematical meaning only if they are referred to a certain class
of functions. For instance, as shown abovein Eqs. (143) and ( 146), we have a unique

stable solution in an open interval ( 156) ill the class of bounded functions, while in a

46




closed interval, ( 157), the uniqueness and stability are not guaranteed. Most of the rt’suits
concerning the properties of solutions to differential equations require differentiability (up
to a certain order) of the functions describing the solutions. However, tile mathematical
restrictions imposed upon the class of functions which guarantee the existence of anunique
and stable solution. do not necessarily lead to the best representation of the corresponding
physical phenomenon. Indeed, turning againto Eqs. ( 143) and ( 143). one notices that
tile unique and stable solution ( 156) does not describe a cummulation effect { asnap of a
whip ) which is well pronounced 1 experiments. Atthe same time, an unstable solutionin a
closed interval (157)gives a qualitative description of this effect. Hence, pm-e mathematical
restrictions imposed upon the solutions are not always consistent with the physical nature
of motions. In this context, the long- term instability in classical dvnamics discussed in the
Section I, canbe interpreted as a discrepancy between these mathematical restrictions
and physical reality. This means that unpredictability in classical dynamics is a price
paid for mathematical “convenience” in dealing with dynamical models. Therefore, the
concept of unpredictability in dynamics should be put as unpredictab ility in a selected
class of functions, or in aselected metrics of configuration space, or in aselected frame of

reference.

Now the following problem can be posed. How to select an appropriate mathematical

representation of a physical phenomena? The answer to this question will be discussed

below.

2. Dynamics In Fast Oscillating Frame of Reference

As shown in the previous sections, the instability, and therefore, the occurrence of
chaos or turbulence'in description of mechanical motions means only that these motions
cannot be properly described by smooth funct ions if the scale of observat ions is limited.
These arguments can be linked to Godel'sincompleteness theorem ( 1931), and the Richard-
son’s ( 1968) proof that the theory of elementary functions in classical analysis is undecid-

able.

But since instability is not an invariant of motions, the following question can be
posed: is it possible to find such a new (enlarged) class of functions, or a new metric of
configuration space, or a new frame of reference inorderto eliminate instability’? Actually

such a possibility would lead to different representative parameters describing the same
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motion in such a way that sinall uncertaintiesin external forcescause small changes of these
parameters. For example, in turbulent and chaotic motions, mean velocities, Reynolds
Stresses, and power spectra, represent “stable” parameters, although classical governing

equations neither are explicitly expressed via these parameters, nor uniquely define them.

The first step toward the enlarging of the class of functions for modeling turbulence
was made by ().” Revnolds (1895) who decomposed the velocity field into the mean and
pulsating components, and actually introduced a multivalued velocity field. However,
this decomposition brought new unknowns without additional governing equations. and
that created a “closure” problem. In 1986 Zak has shown that the Reynolds equat ions
can be obtained by referring the Navier-Stokes equations to a rapidly oscillating frame of
reference. while the Reynolds stresses represent the contribution of inertia forces. From
this viewpoint the “closure” has the saint> status as “proof” of Euclid’s parallel postulate,
since the motion of the frame of reference can be chosen arbitrarily. In other words, the
“closure” of Reynolds equations represents a case of undecidability in classical mechanics.
However, based upon the interpretation of the Reynolds stresses as inertia forces, it is
reasonable to choose the motion of the frame of reference such that the inertia forces.
eliminate the original instability. In other words, the enlarged class of functions should
be selected such that tile solution of the original problem in that class of functions will
not possess an exponential sensitivity to changes in initial conditions. This stabilization
principle has been formulated and applied to chaotic and turbulent motions by Zak (1982,
1985a,1986a,b, 1990). As shown there,the motions which are chaotic (or turbulent)in
t he original frame of reference can be represent edas a sum of the “mean” motion and
rapid fluctuations, while. both components are uniquely defined. It is worth emphasizing
that the amplitude of velocity fluctuation is proportional to the degree of the original
instability, and therefore, the rapid fluctuations can be associated with the measure of
the uncertainty in the description of motion. It should be noticed that both “mean” and
“fluctuation” components representing the originally chaotic motion are stable, i.e., they

me not sensitive to changes of initial conditions, and are fully reproducible.

‘Let us refer the original equation to motion of a non-inertial frame of reference which
rapidly oscillate with respect to the original inertial frame of reference. Then the absolute
velocity ¢ can be decomposed into the relative velocity ¢, and the transport velocity
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G2 = 2020
7= @ + 2G200) cos w — (221)
while gyand ¢) are “’slow” functions of time inthe sense that
ol 9
v T (222)
where 7 is the time scale upon which the changes ¢, and G200y can be ignored.
Then for the mean ¢:
t>r 1
q = ¢ since / " a0y Cos widt = —qppysinwt — 0if w - (223)
0 . o

In other words, a fast oseillating velocity practically does not change the displacements.

Taking into account that

w 2njw 2r/w 2nfw 1
. A Grdt >~ qp , /0‘ q2(0) Sin wtdt = 0, and / 4‘3(0) cos? wtdt = 3‘13(0)
0 2
(224)
one can transform a system:
£to=al + b;-,,,.z‘@"" yto= 1,2 ... n (225)
into the following form:
T, = a;.ji + 0, FE™, 4 (,;m}m 2 = 12, ...n (226)

where z' and r* rJ are means and [lotll~le-correlations of z'as random variables, respec-

tively.

As will be shown below, the transition from (225) to (226) is identical to the Reynolds
transformation: i.e, being applied to the Navier-Stokes equations, it leads to the Reynolds
equations, and therefore, the lasttermsin(226){which is a contribution of inertial forces
due to fast oscillations of the frame of reference) can be identified with the Reynolds
stresses. From a mathematical viewpoint, this transformation is interpretable as enlarging
the class of smooth functions to multivalued ones. Indeed, as follows from (222), for any
arbitrarily small interval A¢, there always exists such a large frequency w > At/2r that
within this interval the velocity ¢runsthroughall its values, and actually the velocity field

becomes multivalues.
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Clearly Egs. (226) result from the time-averaging. In case of applicability of the
t

ergodic hypothesis, t he same equations ran be obt ained from t he ensemble- averaging.

However, formally the averaging procedure canbe introduced axiomatically based upon

the Reynolds conditions:
a+b = a+ b ka = ka, k = k. (k= const.

m Q‘ilat“'

a Tl
This leads tothe identity:
ab = @b + &'l

whetea = @ +a ., b = b +

Let us consider a mechanical system with N-degrees of freedom and the kinetic energy:

W = a;,q'¢, (227)

which g’, and ¢*are the generalizedd coordinates and velocities respectively, and introduce

an N-dimensional (abstract) space with the metric:
ds’® = aude’de® , ¢ = 2W. (228)

Then the equations of motion
7 - g (229)

satisfy the following differential equations:
i+ T5¢%=Q, (230)

where Q* is the force vector, I'j, are the Christoffel symbols:

e. _ 1 . aa,,, _a(lk aa’k af I < T O ifa # Y D)

Equation (230) can be interpreted as a parametrical equation of the trajectory C of a
representing point M with the contravariant coordinates ¢®. The unit tangent vector
T = voto this trajectory is defined as:

o _ a _ d(]“ 1 ‘o mon (')39)
T = Vo = ds ::_9—"—‘;;(1 ¢ Qmply Vo = 4, so=




while this unit normals vy, 12, -+ vy_; are given by the Frenet equations:

t k
dv, tr ,,q_’i’i'_ =

t
ds kq"p da \pI/;, PR SRR LSRR (233)

where Y, yz.--vy-; are the curvatures of the trajectory, and S is the arc coordinate

along this trajectory.
The principal normal 1) is coplanar with the tangent 1y and the force vector Q. The

rest curvatures as well as the directions of the rest normals are defined by Eq. ( 273), Fig.

9.
For simplicity we will confine ourselves by aparticular case when
I, = const (234)

Substituting the decomposition ( 221) into Eqs. (230), one obtains:

i7 + T5sd7d7 + T3sd0)is0 = Q° (235)
Here the terms
[ -3 ey .
Qe = - I137‘1‘2(0)‘72(0) (236)

represent the inertia forces caused by the transport motion of the frame of reference.

Applying the velocity decomposition similar to (221):

V =V + 2V coswt, w — o0 (237)
to the momentum equation for a continuum in Eulerian representation:
N
pl— + VyVv] = Yeo (238)
ot
where o isthe stress tensor, one obtains:
in __ _ .
pl—— + VgV = yge(oc + d) (239)
ot )
m which & is the Reynolds stress tensor with the components:
Gy = —phy, (240)
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In terms of the Reynolds equations. V and Vrepresentthe mean velocity and the amplitude

of fast velocity fluctuations, respectively.

The most significant advantage of the Reynolds-type equations ( 226).(235)and (239)

is that they are explicitly expressed via the physically reproducible parameters POy
which describe, for instance, a mean velocity profile in turbulent motions, or a power spec -
trum of chaotic attractors. However, as a price for that, these equations require a closure
since the number of unknowns in there is larger than the number of equations. Actually
the closure problem has existed for almost a hundred years since the Reynolds equations
were derived. In the next sections, bases upon tile stabilization principle introduced by

Zak, M. (1985a, 1986a,b,1990), this problem will be discussed.
3. Stabilization Principle and the Closure Problem
a. General Remarks

Revisiting the dynamical systems (226),(235), and (239) which describe motions in
the class of multivalued functions, one notes that these systems are not complete in the
sense that the nwunber of unknowns is larger than the number of equations. In particular,
the vector which expresses the bulk contribution of the “micro-scale” motionsinto the
averaged motion, represents excessive unknowns. Such an incompleteness creates a closure
problem. This problem first was identified in connection to the Reynolds equations de-
scribing turbulent motions, The problem of turbulence arose almost a hundred years ago
as a result of discrepancy between theoretical fluid mechanics and experiments. However,
in spite of considerable research activity, there is no general approach to prediction of t ur-
bulence based upon theoretical models. Most of the efforts were directed toward finding
a “ physical” law which would couple the Reynolds stresses with the rate-of-strain of t he
average motion, and thereby, would represent additional equations required for the closure
of the Reynolds equations. For instance, Prandtlintroduced the mixing length assumption

Ju (9__u

— 2y 7 9
T = pf lay By (241)

for the t we-dimensional version of the Reynolds equation:
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Here u, u, u, and v, are the mean and fluctuation velocity projections on the cartesian
coordinates x and y, respectively,7 is the shear componentof the Reynolds stress, and ¢

is a so-railed mixing length which is supposed to he found from experiments.

By exploiting the closure ( 241 ), Prandtl solved severa problems Of two-dimensional
theory of turbulence: he found a mean velocity profile of an axi-symmetrical turbulent
flow in apipe. he described the smoothing out of velocity liscontinuity, ete.. while all of

his solutions were sufficiently close to experimental results.

However, tile same closure (241) faled to provide satisfactory solutionsinmany other
cases, which meanst hatt he closure (241 ) cannotbe considered as a “physical” law.But
does any “physical” law of this type(241) exist.in principle’? And issucha law necessary
for the closure’! Indeed, as shown inthe previoussection, the Reynolds stresses can be
interpreted as a contribution of the inertia forces of arapidly oscillating frame of reference.
while this frame of reference canbe chosen [arbitrarily! However, such an interpretation
leads to another question: is it possible to find such a frame of reference which provides
the “best” representation of the motion”? Obviously, in this representation the motion
must be stable, and therefore, the restoration of stability of the originally unstable motion
can be chosen as the main criterion for selection of tile frame of reference, and therefore,
of the Reynolds stresses. From the mathematical viewpoint, it means that if the original
motion is unstable inthe clam of smooth functions, this instability can be eliminated by
enlarging the class of functions. From that viewpoint, the Prandtl’s closure (241) canbe
treated as a feedback which stabilizes an originally unstable laminar flow, Indeed, turning,
for instance, to a plane Poisson flow with the parabolic velocity profile, one arrives to its
instability if the Reynolds nwmber is larger than R, & 5772. Experiments show that a
new steady turbulent profile is not parabolic any more: it is very flat near the center and is
very steep near the walls. The same profile follows from the Prandtl solution based upon
the closure (241). But since this profile can be experimentally observed, it must be stable,
and this stabilization is carried out by the “feedback” (241).

b. Formulation of the Stabilization Principle

Based upon remarks made in the previous section, we will now formulate the following
stabilization principle. Consider a dynamical model which in some domain of its param-

eters becomes unstable in the class of differentiable functions, i.e., its instability leads to

33




an unbounded growth of ignorable variables. .4s noticed earlier, this means that the corre-
sponding physical phenomena cannot be adequately described in the class of differentiable
functions, and the original model must be modified. The modlification of the model should
be based upon the enlarging the original class of functions in such a way that tile instabil-
ity is eliminated. This mathematical formulation can be complemented and specified by
the following physical reasonings: The application of the Reynolds-averaging conditions
to any nonlinear dynamical model leads to another nonlinear system which differs from
the original one by additional variables - the Reynolds “stress” (see Eqs(226), (233)and
(239)). In asymbolic form, the transformation from the Newtonian (Y. ) tothe Reyvnolds

(R. ) dynamics can be presented as:
Rer = Neuxr + op

If the original dynamical system
Ner =0

is unstable, but the Reynolds-averaged system
Ner+ or =0

is Stable, obviously, the stabilization is performed by the Reynolds stresses o&:driven
by the mechanism of instability of the original model, they grow until theinstability is
suppressed down to a neutral stability. As will be shown below, the last condition uniquely
defines oras wellas al the averaged parameters of the dynamical system. Mathematical
justification of the neutral stability of Reynolds-averaged models will be given in the section
4,C (see Eqgs. (275) and (276).

Experimental verification of neutral stability of free turbulent jets was reported by
Lessen, M. (1976),

In the next sections the stabilization principle will be applied to prediction of postin-
stability behavior of fluids (turbulent motions), and of finite-dimensional dynamical sys-

tems (chaos).




4, Application of the Stabilization Principle to Predictions of Chaotic

Motions

The strategy for application of the stabilization principle to predict chaotic motions

for inertial, potential and dissipative systems will be presented in this section.
a. inertial Motions

In order to clarify the main idea of the approach, let us turn to the inertial motion of a
particle M of unit mass 1 a smooth pseudosphere S having a constant negative curvature
(15). .4s shown thin, the orbital instability, and thercfore, the chaotic behavior of the

particle M can be eliminated by the elastic force (40):
F = —a%e ,a* = const. > 2WG, G < 0 (243)

proportional to the normal deviation € from the geodesie trajectory which is applied to the
particle M. But such a force can appear as an inertial force if the motion of the particle M

is referred to an appropriate non-inertial system of coordinates.

Indeed, so far this motion was referred to an inertial system of coordinates g1, g2,
whew ¢1is the coordimate along the geodesic meridians, and ¢, is the coordinate along
the parallels. Let us introduce now a frame of reference which rotates about the axis of

symmetry of the psendoshere with the rapidly oscillating transport veloeity:
é’:‘ZéQ ('os wt, W X0 (244)

so that the components of the resultant velocity along the meridians and parallels are,
respectively:

vy, = Gy v, = ¢, + 2€0 ("0S wt (245)

Since Eq. (245) has the same structureas Eq. (221), the Lagrangian of the motion of
the particle M relative to the new (non-inertial ) frame of reference can be written inthe
following form: (see Eq. 2'2):
¢
. L o/t (2t €0)
L* = ¢ - o 2V/=Goqr (42 0 (246)
The last termin Eq. (246) represents the contribution of the inertia forces in the new

frame of reference.
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So far the transport velocity € was not specified, and therefore, the Lagrangion (252)

has the same element of arbitrariness as the governing equations (235) deseribing chaotic
motions. Now, based upon the stabilization prineiple, we are going to speeify the transport
motion in such a way that the original orbital instability of the inertial motion of the

particle M is eliminated. Turning to the condition (42), one obtains:

'L
7 2 —2W Gy (247)
where W = Lmuf is the kinetic energy of the particle. This condition can be satisfied if

the transport velocity € 1s coupled with the normal deviation € as following;:

Ve .
YR Gon L et (248)
Gy
As follows from Eq. (45), in this limit case the Lyapunov exponent of the relative motion

in the new (non-inertial) frame of reference will be zero:

g = ‘7'*"‘/" ::0, (1’1:‘__‘“ (249)

and the trajectories of perturbed motions do not diverge. The normal deviation from the
trajectory of the relative motion (in case of zero perturbed velocity ég) can be written in
the following form:

e = ¢ = Const, ¢g = €(t = 0) (250)

which means that in the new frame of reference an initial error € does not grow - it remains
constant. The relative motion along the trajectory is described by the differential equation
following from the Lagrangion (246) which takes the following form (after substituting Eq.
(248).

. 1 et . .
L= i} = e ?/0ng — WG (251)

i -

But the original (unperturbed) motion was directed along the meridians, i.e., ¢y = O.

2V=Co —2v=Gany,

0 (252)

Consequently,

g1 =- 0, ¢1= u“ = Const (253)
1.e., the relative motion along the trajectory remains unchanged.

56




Returning to the original (inertial) system one obtains the resultant velocity by sum-

ming the relative and transport velocities:
Uy = U, (254)
v, = »—muSGU(U cos wt {w =2 00), (253)

in which v, and v, are the veloeity components parallel and normal to the undisturbed

(geodesic) trajectory, respectively.

The equations of the disturbed motion i the original frame of reference are
o = vyt (256)
1 2 ¢ . D Reord
€ = € 4 (—moj Gy e sinwt)  (w — ), (237)
w

in which o is the coordinate along the undisturbed (geodesie) trajectory.

As follows from Eqs. (254-257) the motion in the original frame of reference is stable
in the sense that the current deviations of displacements and velocities do not exceed
their initial values. However, the displacement - time function (257) is not differentiable
because its derivative (255) is multivalued. Indeed, for any arbitrarily small interval At
there always exists such a large frequency w > At/2xn that within this interval the velocity
(255) runs through all its values. In other words, one arrived at stability in the class of
non-differe ntiable functions. (The mathematical meaning of this result will be discussed
MOW.)

Thus, chaotic motion of a particle on a smooth pseudosphere is represented by the
“mean” motion (256) along the undisturbed geodesic trajectory (with the constant velocit y
(244)) and the fluctuation motion (257) normal to this trajectory. The “amplitude” of
these fluctuations is vanishingly small, hut the velocity “amplitude” is finite. It is worth
emphasizing that this amplitude is proportional to the gaussian curvature of the surface
S, it?., to the degree of the orbital instability. Therefore, it can be associated with the
measure of the uncertainty inthe description of the motion.

It is worth mentioning that both “mean” and “fluctuation” components representing
the originally chaotic motion are stable. That is why they are not sensitive to initial
uncertainties and are fully reproducible.  In other words, such a representation of the

originally chaotic motion is deterministic.

-1

(2]




One showld notice that the condition w — oo 1s a mathematical idealization. Practi-
rally, w is finite:
w > 1/T, (-

Lo

58)

where T'is a time scale over which changes of the parameters of the motion are negligible. In
the same sense the concepts of differentiability and nmltivaluedness have to be understood.
Indeed, the multivaluedness of the functions (261) and (262) means that the time interval
between two different values of these functions is smaller than the scale of observation T

3

Of the examined motion, and therefore, these values can be associated with “almost” the

same argument .

As discussed above, the concept of stability is related to a certain class of functions,
or a type of space: the same solution can be stable in one space and unstable in another,
depending on the definition of the “distance” between two solutions. Indeed, if the distance

between the solutions in (263) i1s defined as

n

k k -
p o= Z max |€(2 )(t) - f(, )(t)l , (259)
k=0
then the solution (257) is stable forn = O, 1, but it is unstableforn=2,3, . . . . since its
derivatives 5(2), e .. ete., areunbounded. In other words, the concept of stability as well

as chaos is an attribute of a mathematical model rather than of a physic al phenomenon.

Hence, from a formal mathematical point of view, the occurrence of chaos in descrip-
tion of mechanical motions means only that these motions cannot be properly described

by smooth functions if the scale of observation is finite.

One can notice that the application of the stabilization principle to representation of
chaotic motions in Lagrangion dynamies can be linked to a control problem. Indeed, we
are introducing additional rapidly fluctuating forces (coming from non-inertial motions of
the frame of reference) which are coupled with the parameters of motions insucha way

that the original instability is eliminated.

In the particular case of an inertial motion of a particle M on a pseudosphere, the rate
of divergence of the trajectories was constant (see Eq. (13)) which means that local and
global Lyapunov exponents are the same. That is why by t'laminating the positive local

.

Lyapunov expouent we “antomatically” eliminate the global one. In the general case, the
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situation is more complex: the local Lyapunov exponents depend upon the position of the

system, and by eliminating all the local positive Lyapunov exponents, one over stabilizes
the motion. Indeed, non-positive global Lyapunov expounents can exist even if the local
ones are positive in some domain of space where the motion can oceur. As we will see
later, the elimination of global Lyapunov experiments is a much harder problem, and that
is why in many practical situations, we will confine ourselves with the easier problem of

elimination of local exponents i.e.; with the over stabilize d representations.
b. Potential Motions

Based upon Eqs. (235), for Hotential motions, the governing equations can be writ en

in the following form:

o o e an o

q m“l‘;‘lls = ‘;97(; +oag, (260)
on ;
— = Q" 261
fon = ¢ (261)

where M is the potential energy of the dynamical system, and Qf;y are the inertia forces (or
the "Reynolds stresses™ caused by the rapidly oscillating transport motion of the frame of
roference (see Eqs. (236)).

For simplicity, we will confine ourselves by a two-dimensional dynamical system as-

suming that « =1, 2.

Following the same strategy as those applied to inertial motions, let us couple tilt’
inertia forces with the parameters of the dynamical system in such a way that the original
orbital instability (ifit occurs) is eliminated. For that purpose, first we will represent this

forces in the form:

where M;yisa fictitious potential energy equivalent to the kinetie energy of the fluctuations.
Thin, turning to the criteria of local orbital stability (38), one finds this potential energy
n i) and consequently, the inertia forces afyy fromthe condition that original local orbital

instability is eliminated:

00 + M)

V(ﬂ - n(,‘))ﬁll 2 1
G+ +
3 + Jq*Oq)

2 20

ST = T 9“(2_"”"("i1)"’ﬂ] 0412

dg*
(263)
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Here W, G, and Ffj are defined by the parameters of the dynamical system (260) via
Eqgs. (27), (29) and (30), respectively, and n; are the contravariant components of the unit

normal n to the trajectory of the basie function.

Eq. (263) contains ouly one nnknown g,y which can be found from it, and that will

define the inertia forces, or the *Reynold stresses™ (262)

It should be noticed that unlike the case of the inertial motion of a particle on a
pseudosphere, hiere the Goeussian curvature G, as well as the gradients of the potential
energy 1, are not constants, and consequently, the local Lyapunov exponents may be
different from the global ones. This means that the condition (263) eliminates local positive
exponents, and therefore, the solution to Eqs. (260) and (263) represents an over stabilized
motion. Obviously, elimination of only global positive Lyapunov exponents would lead to
solutions with less uncertainties while some of local exponents in certain domains of the
phase space may even remain positive. However, the strategy for elimination of global

positive exponents is more sophisticated, and it can he implemented only numerically.

It is worth noting that Eq.(269) is simplified to the following:

1 [O*(N4 Ny
G+ —— n'‘n? = 0, 2064
zw{ dqi0g (264)
if the basic motion is characterized by zero potential forces
an
IV _ 265
oo (265)

It may oceur, for instance, when the dynamical system is in a relative equilibrium with

respect to a moving frame.

Examples Of application of the stabilization principle to elastic systems and toideal
fluid are given by Zak, M. (19S7, and 198Ga, respectively).

c* General Case

, When motions of a dynamical system are not potential, in many cases it is more con-
venient to represent Eqgs. (235) in the form of a system of first order differential equations.
For simplicity, we confine ourselves by dynamical systems which can be presented in the
following form:

s 1 1 7 o.m - ; g
o= (IJ-.I‘J 4 b]m‘z,J.l , 1 = 1,2,...n (266)
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Applying the transformation (221) to the variables o}, one arrives into the following
Reynolds-type equations (which are equivalent to Eqs. (235)):
1

T o= atT -}- h

) L2 DL e = 1,200, (267)

Jm v sy

with the additional terms b3, #70™ representing the Reynolds stresses.

a. The Closure Problem

As in the previous cases, because of additional unkuowns w2 in (267), the closure
problem arises. Analogously, we will scek additional coupling between the mean motion
and the fluctuations:

e = u{m.'t'lj‘l + (lf,'l“fi"lﬁ?”...vtv., (268)

based upon the stabilization principle the application of which will be clarified below,

Firstly, we recall that the solutions to equations (266) are chaotie, and consequently,

some of the Lyapunov exponents of equation (266) are positive:

At > 0,m= 12, .. .S (269)

m
Secondly, we are looking for a decompositionin which the mean motion is periodie, rather
than chaotic. Hence, the fluctuations should be coupled with the mean motionsuch that all
positive Lyapunov exponents become zero, while the rest of the expondents are unchanged.
Indeed, In this case the mean motion is a regular motion which is the “closest” to the
original chaotic motion. Since the Lyapunov exponents for the system (267, 268) depend

on the “feedback” coefficients a] *)', o]

ete., the closure can now be formulated as follows:
AT @™, @™, ) = o i=12..,5,,
Aad™, @™, ) = 2%0,0,.. ), i= 1,2,. ... S0,
AT(a™ @l )= A7(0,0,...), 0 = 1,2,..., S-., (270)
in which A*, A% and A~ are positive, zero and negative Lyapunov exponents, respectively.

- . . . ? . . .
Obviously, those coefficients «] ™ which do not appear in equation (270), must be zero.

Thus, the system (267, 26S, 270) is closed. It defines the regular mean motion and
fluctuations which represent the original chaotic motion. Sinece all the Lyapunov exponents
for this systt’in are not positive, the solution is stable and predictable in the sense that
small changes in the initial conditions cause small changes in both the mean motion and

the fluctuations.
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In the next subsection the application of this approach to the Lorenz strange attractor

is illustrated.
b. Higher Order Approximations

The Reynolds decomposition of the variables #' in Eq. (266) generates not only pair
correlations xtxt, but also correlations of higher orders, such as triple correlations ctad ok,

quadruple correlations 2'ad ek e et ¢

Indeed, multiplying equations (266) by ¥ and averaging and combining the results,

one obtain the governing equat ions for the pair correlations o* zk:

— - X —

sk = (13;1rla'k + «a

]-'.Irf.zri + b;m(‘zrk.l‘f;l:“‘ + akpd B 4 pka™ o))

A b (wtade™ 4 wted w4 g™ pd), (271)

which contain nine additional triple correlations £ha/ ek,
Similar equations for the triple correlations will contain all the quadruple correlations
ete. In general, one arrives at an infinite hierarchy of equations which are open, since any

first N equations relate (N + 1) correlations.

From this viewpoint all the closures discussed above can be considered as first-order
approximations which defined only the mean components of the chaotic motions. In or-
der to define both the mean motion and the double correlations, one should consider the
Reynolds equations (267) together with equations (271), In this case the evolution of the
double correlations is already preseribed by equations (271), and consequently, the stabi-
lizing feedback must now couple the triple correlations with the mean and pair correlation
Component s:

el = Pk elem). (272)
The system (267, 271, 272) will define periodic mean and pair correlation components. It
is possible that the mean components may e different from those found before (in the
saint: way in which the second-order approximation may be different from tilt first-order

one).

The higher order approximations can be introduced using the same procedure.
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c. Computational Strategy

As follows” from the above, tilt' closure,i.e., the stabilizing feedback between the
Reynolds stresses and the mean components of the motion, can be written in the explicit
form only if the criteria for the onset of chaos are formulated explicitly. Since such a
situation is an exception rather than a rule, we develop below a computational strategy

which allows one to find the closure regardless of the complexity of the original equations.

We will demonstate this strategy using equations (26 6). The same strategy will be
suitable for the Navier-S tokes equations, since after an appropriate discretization technique

they reduce to tilt' form (266).

Turning to equation (267), which follow from equations (266), as a result of the
Reynolds decomposition, let us linearize them with respect to the original ( “laminar” )

state of xf:

To= (a) 4 20%,70)77, with u = Oat ' = T (273)
Introducing small “laminar” disturbances in the form
o= T oexp (Aot), (274)

one arrives at a truncated analog of the Orr-Sommerfeld equations:

041 1 a1l —my=J
A0S = (a4 205,,7%00)T, (

o
-1
[a92 {
—

where the local eigenvalues of equations (267)

AV = A9, 0N (276)

n?y

are the roots of the characteristic equation

det(AY8F — af — 208, %) = 0 (277)

Applying the same procedure to the second-order Reynolds equations (271), one obtains,

istead of equation (272)

“Aa1 = (a; -+ 21’3‘::z3’6")"’j1’k (278)

63



and, therefore, the local cigenvalues of equations ( 271 “) are twice as large as those for

equations (267), i.e., instead of equation (274):
stk =~ exp2A,t). (279)
If the original “laminar” state T§ is unstable, Le., there are AV with positive real parts in
equation (276),

Red? > 0, (280)
then the pair correlations (279) will grow much faster than the mean motion disturbances
(277), and one can assume that these correlations will be large enough to stabilize equations

(267) while the mean motion will remain sufficiently close to its original state Tj. This

property makes possible the following computational strategy.

Let usseekaclosuretoequations (267) i the neighborhood of the original laminar

state T in the form

Bl = w (281)

“mn

Substituting equation (281) into equation (267) and linearizing them with respect to the

original “laminar” state T), one obtains
o= (ay 4 205,10 4+ CHEd, (282)
While the eigenvalues for this equation follows from
det(Ad} — af — 205, T - C) = 0. (283)
The sought coeflicients C;- must be selected such that

Red; = %(mcﬁ,-- l(Re ). (284)

Indeed, in this case all the positive real parts of the local eigenvalues causing the instability

of the “laminar low” become zero, while the rest of these eigenvalues remain unchanged.

In order to find ') from condition (254 ), we diagonalize the matrix

(l;- + 21‘}1117‘;(’)n == {Fl} (289)
such that
07 ' FO = [Mi, . A (286)




Then he matr x of the sought coeflicients

¢ o= {Cy} (287)
1s found to be
1 ,
{Ciyy= 5010, Oy GO (288)
in which
C; = »%(:Ru\, 4+ J(Re ], (289

Substituting equation (248) into equation (282), one obtains a linearized governing equa-
tion for the turbulent or chaotic motion at the very beginning of the transition from the

laminar motion. Selecting a small time step Aty one can find the next state zj:
7; = Ty -+ ToAfl. (290)

Repeat ng this procedure for xf, At,, x4, At ete., one arrives at the evolution of the
turbulence, 01" chaos. The Processends wilt11 tilt solution approaches aregular (static o1

periodic) attractor whose existence is assumed.

A numerical implementation of this strategy can be based upon a direct suppression
of exponential growths of errors in initial conditions by means of an appropriate selection
of the Reynolds stresses. As an example of application of such a strategy, we will illustrate
prediction of the probabilistic structure of the Lorenz attractor by using the stabilization

principle.

Applying the Reynolds transformation to the Lorenz attractor:

& = —or 4 oy
Yy = —Iz + rr — y (291)
D= ay — bz
one obtains
r = —or 4 oy
Y = 1% — §y - T3 — I: (292)
T 4 T4 TY




where T, 7y, 7 are the mean values of o, y, and z, while 72 and Ty are double correlations

representing the Reynolds “stresses”,

As extra-variables, tilt’st> double correlations must be found from the condition that
they suppress the positive Lyapunov exponent down to zero. In this case, both the mean
and the double- correlations components of the motion will be represented by periodie

attractors, Le., in a fully deterministic way.

Numerical implementation of this strategy performed for o = 10, r = 28, and b =
8/3 leads to the following results. Fig. 10 represents the original chaotic attractor as a
solution to Eq. (291 ). In Fig. 11, this attractor is decomposed into two deterministic
(periodic) motions: the mean motion (Fig. 1 1a)and the double correlations, it’., the
Reynold’s stresses (Fig. 1 1h, ¢). In order to find all the double correlations, one should
exploit the system for triple- correlations which can he obtained in a straight- forward way
from Eq. (291). In this sytem all the triple-correlations, as extra-variables, must be found
from stabilization prineiple in a similar way. By continuing this process, one can find the

probabilistic structure of the solution to the Lorenz equations (291) to a required accuracy.

[t should be stressed that the solution to Eqs. (292) plotted in Fig. 11 is stable (in
the new class of functions which includes “multivalued” fluctuations ): small changes in

initial conditions will lead to small changes in the solution.

One should reeall that although equations (292) are different from the original Lorenz
equations (291 ), they describe the same physical phenomenon in a specially selected fast

oscillating frame of reference.
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Figure 8






Figure 10, x vs. y plot for 1,000,000 points sampled at 1000 points.




Figuref{a. x vs. yplot for 1,000,000 points sampled at 1000 points.
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Figure{1b.xy: Double correlations. Plot over time (8000 points).
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Figurelfc. Xz: Double correlations. Plot over time (8000 points).



